Johann Strauss II
hope this helps
I believe it’s C. Plane .
<span>Lack
of training in getting the vital sign or worst, not knowing the right way to
take the vital sign could contribute to an inaccurate vital sign reading. For example,
if you are tasked to get the respiration of the patient, the rule is to count
inhale and exhale as one. But if you were not able to know this rule, and you
counted inhale as one and exhale as another, this could impair the vital
reading. </span>
Define an x-y coordinate system such that
The positive x-axis = the eastern direction, with unit vector

.
The positive y-axis = the northern direction, with unit vector

.
The airplane flies at 340 km/h at 12° east of north. Its velocity vector is

The wind blows at 40 km/h in the direction 34° south of east. Its velocity vector is
![\vec{v}_{2} =40(cos(34^{o})\hat{i} - sin(24^{o})]\hat{j}) = 33.1615\hat{i} -22.3677\hat{j})](https://tex.z-dn.net/?f=%5Cvec%7Bv%7D_%7B2%7D%20%3D40%28cos%2834%5E%7Bo%7D%29%5Chat%7Bi%7D%20-%20sin%2824%5E%7Bo%7D%29%5D%5Chat%7Bj%7D%29%20%3D%2033.1615%5Chat%7Bi%7D%20-22.3677%5Chat%7Bj%7D%29)
The plane's actual velocity is the vector sum of the two velocities. It is

The magnitude of the actual velocity is
v = √(121.1615² + 306.0473²) = 329.158 km/h
The angle that the velocity makes north of east is
tan⁻¹ (306.04733/121.1615) = 21.6°
Answer:
The actual velocity is 329.2 km/h at 21.6° north of east.