Sodium and magnesium oxides are alkaline. Aluminium oxides are amphoteric (reacting both as a base or acid). Silicon, phosphorus, sulfur, and chlorine oxides are acidic. Some non-metal oxides, such as nitrous oxide (N2O) and carbon monoxide (CO), do not display any acid/base characteristics.
Explanation:
Both conduction and convection are both forms of heat transfer from one place to another.
- In conduction, there must be contact between two bodies for the process to take place but in convection, the matter moves to transfer heat.
- Conduction mostly occurs in solid substances whereas convection occurs mostly in fluids.
- Heat transfer in conduction is quite slow compared to convection which is much faster.
Example of conduction is heating of iron pot when cooking
Example of convection is the refrigerating system.
Good laboratory technique demands clean glassware because the most carefully executed piece of work may give an erroneous result if dirty glassware is used. In all instances, glassware must be physically and chemically clean and in many cases, it must be bacteriologic-ally clean or sterile.
The formula mass of a molecule is the sum of the atomic weights of the atoms in the empirical formula of the compound. It is also known as Formula Weight.
The atomic weights of
N = 14.01 amu
H = 1.00 amu
P = 30.97 amu
O = 16.0 amu
Now, we will calculate now the formula mass of a given substance
3(14.01) + 12(1.00) + 1(30.97) + 4(16.0) = 42.03 + 12.00 + 30.97 + 64.0 = 149.0 amu
Therefore, the formula mass for (NH4)3PO4 is 149.0 amu
Answers:
<span>Answer 1: 10.03 g of siver metal can be formed.</span>
Answer 2: 3.11 g of Co are left over.
Work:
1) Unbalanced chemical equation (given):
<span>Co + AgNO3 → Co(NO3)2 + Ag
2) Balanced chemical equation
</span>
<span>Co + 2AgNO3 → Co(NO3)2 + 2Ag
3) mole ratios
1 mol Co : 2 mole AgNO3 : 1 mol Co(NO3)2 : 2 mol Ag
4) Convert the masses in grams of the reactants into number of moles
4.1) 5.85 grams of Co
# moles = mass in grams / atomic mass
atomic mass of Co = 58.933 g/mol
# moles Co = 5.85 g / 58.933 g/mol = 0.0993 mol
4.2) 15.8 grams of Ag(NO3)
# moles Ag(NO3) = mass in grams / molar mass
molar mass AgNO3 = 169.87 g/mol
# moles Ag(NO3) = 15.8 g / 169.87 g/mol = 0.0930 mol
5) Limiting reactant
Given the mole ratio 1 mol Co : 2 mol Ag(NO3) you can conclude that there is not enough Ag(NO3) to make all the Co react.
That means that Ag(NO3) is the limiting reactant, which means that it will be consumed completely, whilce Co is the excess reactant.
6) Product formed.
Use this proportion:
2 mol Ag(NO3) 0.0930mol Ag(NO3)
--------------------- = ---------------------------
2 mol Ag x
=> x = 0.0930 mol
Convert 0.0930 mol Ag to grams:
mass Ag = # moles * atomic mass = 0.0930 mol * 107.868 g/mol = 10.03 g
Answer 1: 10.03 g of siver metal can be formed.
6) Excess reactant left over
1 mol Co x
----------------------- = ----------------------------
2 mole Ag(NO3) 0.0930 mol Ag(NO3)
=> x = 0.0930 / 2 mol Co = 0.0465 mol Co reacted
Excess = 0.0993 mol - 0.0465 mol = 0.0528 mol
Convert to grams:
0.0528 mol * 58.933 g/mol = 3.11 g
Answer 2: 3.11 g of Co are left over.
</span>