500,000 g of baking soda is present in 1000 boxes of 500 g baking soda boxes.
Answer:
Option C.
Explanation:
As 500 g of baking soda is taken in each box of that company. The total weight of baking soda in all the boxes can be determined by adding the weights of each box. This is possible only when the number of boxes is less. But if the number of boxes are large, then we can determine the total weight of baking soda by multiplying the number of boxes with the weight in each box.
So in this case, 1000 boxes are present and in that 500 g of baking soda are present in each box.
So total grams of baking soda will be 1000 * 500 = 5,00,000 g.
Thus, 500,000 g of baking soda is present in 1000 boxes of 500 g baking soda boxes.
It has to be understood that 2 moles of oxygen are there in each mole of PbO2. Then it has to be calculated for 2 moles of oxygen.
Amount of oxygen = 2 * 5.43 moles
= 10.86 moles
Now it is also a fact that each mole of H2O contains 1 mole of oxygen. Then it can be easily concluded that 10.86 moles of water will be produced. I hope the procedure is clear enough for you to understand.
Grams of Phosphorus = 4.14 grams
Grams of white compound = 27.8 grams
Grams of Chlorine would be = 27.8 - 4.14 = 23.66 grams
Calculating moles which would be grams / molar mass
Molar mass of P = 30.97 grams / moles; Molar mass of Cl = 35.45 grams / moles
Moles of Phosphorus = 4.14 grams / 30.97 grams / moles = 0.1337 moles
Moles of Chlorine = 23.66 grams / 35.45 grams / moles = 0.6674 moles
Calculating the ratios by dividing with the small entity
P = 0.1337 moles / 0.1337 moles = 1
Cl = 0.6674 moles / 0.1337 moles = 5
So the empirical formula would be PCl5
Metals generally form cations, meaning they become positively charge - this positive charge is due to the loss of electrons.
Answer:
Kauai
Explanation:
I look this up when I am doing math