Answer: The answer is A, A new element or different atom formed from the original two.
Hope this helps! :D
-<em>TanqR</em>
The answer is homogeneous
Answer:
6.32 moles of Fe
Explanation:
The given chemical equation is presented as follows;
2Fe + 3Cl₂ → 2FeCl₃
The mass of Cl₂ in the reaction = 336 grams
The molar mass of chlorine gas Cl₂ = 35.435 g/mol
The number of moles, n = Mass/(Molar mass)
The number of moles of Cl₂ in the reaction, n = 336 g/(35.435 g/mol) ≈ 9.842 moles
From the given reaction, 3 moles of Cl₂ react with 2 moles of Fe to produce 2 moles of FeCl₃
By the law of definite proportions, we have that 9.482 moles of Cl₂ will react with approximately 9.482 × 2/3 = 6.32 moles of Fe to produce approximately 6.32 moles of FeCl₃
Therefore, approximately 6.32 moles of Fe will be required to react with 336 grams of Cl₂.
Answer:
Option (D) is definitely the answer.
Explanation:
Before going further, it is important to know what buffers and pH represent, which are keywords to answering this question.
Buffers is a special solution that can withstand or resist changes due to pH levels which may be as a result of an introduction of acidic or basic components into the blood. In other words, they maintain the stability of pH level in the human blood.
pH blood levels on the other hand, can be grouped into three: acidity, neutrality and alkalinity. Using a pH scale, one can determine its current level. In the human blood the pH level is near neutral and needs to be on a level near 7.4 in order to avoid a high rise or a drastic fall even if acidic or basic components come in or departs the blood stream.
Therefore, if one of the buffers that contributes to pH stability in human blood is carbonic acid, which is as a result of a combination of carbon dioxide and water in the blood stream. On getting to the lungs it is converted to water and subsequently released as waste. Maintaining this stability will definitely be to decrease the concentration of carbonic acid and increase that of water instead.