Energy can be released and absorbed during the formation of a solution, not one or the other. When a solute interacts with the solvent, energy is absorbed so the solvent can overcome the intermolecular bonds of the solute and energy is released, most commonly, in the form of heat, light, or a gaseous byproduct.
Answer:
ΔP = 14.5 Ns
I = 14.5 Ns
ΔF = 5.8 x 10³ N = 5.8 KN
Explanation:
The mass of the ball is given as 0.145 kg in the complete question. So, the change in momentum will be:
ΔP = mv₂ - mv₁
ΔP = m(v₂ - v₁)
where,
ΔP = Change in Momentum = ?
m = mass of ball = 0.145 kg
v₂ = velocity of batted ball = 55.5 m/s
v₁ = velocity of pitched ball = - 44.5 m/s (due to opposite direction)
Therefore,
ΔP = (0.145 kg)(55.5 m/s + 44.5 m/s)
<u>ΔP = 14.5 Ns</u>
The impulse applied to a body is equal to the change in its momentum. Therefore,
Impulse = I = ΔP
<u>I = 14.5 Ns</u>
the average force can be found as:
I = ΔF*t
ΔF = I/t
where,
ΔF = Average Force = ?
t = time of contact = 2.5 ms = 2.5 x 10⁻³ s
Therefore,
ΔF = 14.5 N.s/(2.5 x 10⁻³ s)
<u>ΔF = 5.8 x 10³ N = 5.8 KN</u>
The centripetal force acting on the ball will be 23.26 N.The direction of the centripetal force is always in the path of the center of the course.
<h3>What is centripetal force?</h3>
The force needed to move a body in a curved way is understood as centripetal force. This is a force that can be sensed from both the fixed frame and the spinning body's frame of concern.
The given data in the problem is;
m is the mass of A ball = 0.25 kg
r is the radius of circle= 1.6 m rope
v is the tangential speed = 12.2 m/s
is the centripetal force acting on the ball
The centripetal force is found as;

Hence the centripetal force acting on the ball will be 23.26 N.
To learn more about the centripetal force refer to the link;
brainly.com/question/10596517
Answer:
Explanation:
We know that Impulse = force x time
impulse = change in momentum
change in momentum = force x time
Force F = .285 t -.46t²
Since force is variable
change in momentum = ∫ F dt where F is force
= ∫ .285ti - .46t²j dt
= .285 t² / 2i - .46 t³ / 3 j
When t = 1.9
change in momentum = .285 x 1.9² /2 i - .46 x 1.9³ / 3 j
= .514i - 1.05 j
final momentum
= - 3.1 i + 3.9j +.514i - 1.05j
= - 2.586 i + 2.85j
x component = - 2.586
y component = 2.85