Answer:
mph
Explanation:
= Speed of bird in still air
= Speed of wind = 44 mph
Consider the motion of the bird with the wind
= distance traveled with the wind = 9292 mi
= time taken to travel the distance with wind
Time taken to travel the distance with wind is given as

eq-1
Consider the motion of the bird with the wind
= distance traveled against the wind = 6060 mi
= time taken to travel the distance against wind
Time taken to travel the distance against wind is given as

eq-2
As per the question,
Time taken with the wind = Time taken against the wind





mph
Kinetic energy is a result of mass in motion at a certain velocity.
<span>1 Joule = 1 kg • (m/s)<span>2
</span></span>the force as a function of mass of the object.
Answer:
Explanation:
velocity of first projectile after 3 s
v = u - gt
v = 49.4 - 9.8 x 3
= 20 m /s
Velocity of second projectile after 3 s after being dropped from rest
v = u + gt
= 0 + 9.8 x 3
= 29.4 m /s
They will be moving in opposite direction at the time of meeting , so their relative velocity
= 20 + 29.4 = 49.4 m /s
From the frame of reference of the first projectile, the velocity of the second projectile will be 49.4 m /s .
At a certain location, the horizontal component of the earth’s magnetic field is, due north<span>. A proton moves eastward with just the right speed, so the magnetic force on it balances its weight.
</span>
Explanation:
Electrical resistance can be defined as the opposition to the flow of current in an electric circuit or wire. The resistance converts electrical energy into thermal energy, this serves as friction in mechanical systems. And this electrical energy converted to thermal is dissipated.
By ohm's law we have
Resistance R = Voltage V/ Current I