1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arisa [49]
3 years ago
7

One of the waste products of a nuclear reactor is plutonium-239 . This nucleus is radioactive and decays by splitting into a hel

ium-4 nucleus and a uranium-235 nucleus , the latter of which is also radioactive and will itself decay some time later. The energy emitted in the plutonium decay is and is entirely converted to kinetic energy of the helium and uranium nuclei. The mass of the helium nucleus is , while that of the uranium is (note that the ratio of the masses is 4 to 235).
(a) Calculate the velocities of the two nuclei, assuming the plutonium nucleus is originally at rest.
(b) How much kinetic energy does each nucleus carry away
Physics
1 answer:
Gekata [30.6K]3 years ago
3 0

Answer:

a) v_{U-235} = 2.68 \cdot 10^{5} m/s

v_{He-4} = -1.57 \cdot 10^{7} m/s  

b) E_{He-4} = 8.23 \cdot 10^{-13} J

E_{U-235} = 1.41 \cdot 10^{-14} J

 

Explanation:

Searching the missed information we have:                                        

E: is the energy emitted in the plutonium decay = 8.40x10⁻¹³ J

m(⁴He): is the mass of the helium nucleus = 6.68x10⁻²⁷ kg  

m(²³⁵U): is the mass of the helium U-235 nucleus = 3.92x10⁻²⁵ kg            

a) We can find the velocities of the two nuclei by conservation of linear momentum and kinetic energy:

Linear momentum:

p_{i} = p_{f}

m_{Pu-239}v_{Pu-239} = m_{He-4}v_{He-4} + m_{U-235}v_{U-235}

Since the plutonium nucleus is originally at rest, v_{Pu-239} = 0:

0 = m_{He-4}v_{He-4} + m_{U-235}v_{U-235}  

v_{He-4} = -\frac{m_{U-235}v_{U-235}}{m_{He-4}}    (1)

Kinetic Energy:

E_{Pu-239} = \frac{1}{2}m_{He-4}v_{He-4}^{2} + \frac{1}{2}m_{U-235}v_{U-235}^{2}

2*8.40 \cdot 10^{-13} J = m_{He-4}v_{He-4}^{2} + m_{U-235}v_{U-235}^{2}    

1.68\cdot 10^{-12} J = m_{He-4}v_{He-4}^{2} + m_{U-235}v_{U-235}^{2}   (2)    

By entering equation (1) into (2) we have:

1.68\cdot 10^{-12} J = m_{He-4}(-\frac{m_{U-235}v_{U-235}}{m_{He-4}})^{2} + m_{U-235}v_{U-235}^{2}  

1.68\cdot 10^{-12} J = 6.68 \cdot 10^{-27} kg*(-\frac{3.92 \cdot 10^{-25} kg*v_{U-235}}{6.68 \cdot 10^{-27} kg})^{2} +3.92 \cdot 10^{-25} kg*v_{U-235}^{2}  

Solving the above equation for v_{U-235} we have:

v_{U-235} = 2.68 \cdot 10^{5} m/s

And by entering that value into equation (1):

v_{He-4} = -\frac{3.92 \cdot 10^{-25} kg*2.68 \cdot 10^{5} m/s}{6.68 \cdot 10^{-27} kg} = -1.57 \cdot 10^{7} m/s                        

The minus sign means that the helium-4 nucleus is moving in the opposite direction to the uranium-235 nucleus.

b) Now, the kinetic energy of each nucleus is:

For He-4:

E_{He-4} = \frac{1}{2}m_{He-4}v_{He-4}^{2} = \frac{1}{2} 6.68 \cdot 10^{-27} kg*(-1.57 \cdot 10^{7} m/s)^{2} = 8.23 \cdot 10^{-13} J

For U-235:

E_{U-235} = \frac{1}{2}m_{U-235}v_{U-235}^{2} = \frac{1}{2} 3.92 \cdot 10^{-25} kg*(2.68 \cdot 10^{5} m/s)^{2} = 1.41 \cdot 10^{-14} J

 

I hope it helps you!                                                                                    

You might be interested in
Which of the following provides evidence that earth is rotating? The sun rises and sets, The plane of a foucault pendulum appear
bagirrra123 [75]
The answer would be '<span>The plane of a Foucault pendulum appears to shift its orientation' because it is an experiment to demonstrate the rotation of the earth.

Hope this helps.</span>
4 0
3 years ago
A footballer kicks a ball at an angle of 45° with the horizontal. If the ball was in the air
Naily [24]

Answer:

HOPE THIS ANSWER WILL HELP YOU

3 0
3 years ago
I hope you are able to read this question?? Help ASAP this question is on the quiz tommorow
Masteriza [31]

You would be correct.

Because you have only JUST released the arrow, and how close he is to the target, it would have the same amount of energy when it strikes the target. Yes, the kinetic energy would be destroyed when you hit the target but not right away. And yes, the potential energy would also be destroyed once you release the arrow, but it goes straight back once it stops moving, aka when it hits the target, although it has only just stopped moving.

Hope this helps!

8 0
3 years ago
Which of the following is not an example of critical thinking?
Ipatiy [6.2K]
Critical thinking means that you should question everything that you read and hear and you should also verify your information. You should not just accept the first possible answer without questioning or verifying it. 

So the correct answer is:
c. implementing the first solution to a problem identified
8 0
3 years ago
Read 2 more answers
The entropy of an isolated system must be conserved, so it never changes.a. Trueb. Fasle
Snowcat [4.5K]

Answer:

B: False

Explanation:

The second law of thermodynamics states that: the entropy of an isolated system will never decrease because isolated systems always tend to evolve towards thermodynamic equilibrium which is a state with maximum entropy.

Thus, it means that the entropy change will always be positive.

Therefore, the given statement in the question is false.

6 0
3 years ago
Other questions:
  • Describe a technology used in space exploration.
    14·1 answer
  • Name the four major forces in the universe that act over long distance as I greater than the nucleus of an atom?
    11·1 answer
  • Which scale is being described? Water freezes at 32 . Water freezes at 0 . Water freezes at 273 .
    14·2 answers
  • Weight is measured as the downward force of __________.
    12·1 answer
  • HELP HELP HELP ME!!!
    13·1 answer
  • A force of 35 N acts on a ball for 0.2 s. If the ball is initially at rest:
    15·1 answer
  • Determine the mass of Ar in 1.00 liter of a gas mixture at 25oC which contains 0.300 atm of Ne and has a total pressure of 4.00
    9·1 answer
  • Lahat ay tumutukoy sa bugtong, maliban sa:
    15·1 answer
  • 22 POINTS!!PLEASE HELP
    7·1 answer
  • Blood is 92% water. Blood is
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!