Answer:
leaf and a balloon is the correct answer
Answer:
1.84 kJ (kilojoules)
Explanation:
A specific heat of 0.46 J/g Cº means that it takes 0.46 Joules of energy to raise the temperature of 1 gram of iron by 1 Cº.
If we want to heat 50 g of iron from 20° C to 100° C, we can make the following calculation:
Heat = (specific heat)*(mass)*(temp change)
Heat = (0.46 J/g Cº)*(50g)*(100° C - 20° C)
[Note how the units cancel to yield just Joules]
Heat = 1840 Joules, or 1.84 kJ
[Note that the number is positive: Energy is added to the system. If we used cold iron to cool 50g of 100° C water, the temperature change would be (Final - Initial) or (20° C - 100° C). The number is -1.84 kJ: the negative means heat was removed from the system (the iron).
s alluded to in the other answers, salt refers to any ionic compound that doesn't have “oxides” in it. Table salt is sodium chloride. Going down the periodic table, the first column contains lithium, sodium, potassium, rubidium, cesium, and francium. This group (alkali metals) of atoms (and their corresponding positive ions) gets larger in the order shown above. Therefore, their ionic bonds with chloride (or any nonmetal) gets smaller. The trend of their corresponding compounds is a decreasing hardness, decreasing melting point, decreasing boiling point, and decreasing thermal stability. These are the major periodic trends of these corresponding compounds. Other metal ions generally have higher positive charges on them. This makes the ionic bonds considerably larger and you can probably surmise most of their corresponding properties listed above. However, the details of their lattice structures may cause the overall trend to vary.
Answer:
Pressure of the gas = 12669 (Pa) and height of the oil is 1,24 meters
Explanation:
First, we can use the following sketch for an easy understanding, in the attached image we can see the two pressure gauges the one with mercury to the right and the other one with oil to left. We have all the information needed in the mercury pressure gauge, so we can determine the pressure inside the vessel because the fluid is a gas it will have the same pressure distributed inside the vessel (P1).
Since P1 = Pgas, we can use the same formula, but this time we need to determine the height of the column of oil in the pressure gauge.
The result is that the height of the oil column is higher than the height of the one that uses mercury, this is due to the higher density of mercury compared to oil.
Note: the information given in the units of the fluids is not correct because the density is always expressed in units of (mass /volume)