2.
On the left side of the equation, there are two Li and two NO3. Therefore, the balanced equation on the right should be 2Li(NO3)
Answer:
B) we will convert the 10 g of NaCl into moles.
Explanation:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
we will convert the 10 g of NaCl into moles.
Number of moles of NaCl:
Number of moles = mass/molar mass
Number of moles = 10 g/ 58.44 gmol
Number of moles = 0.17 mol
1 Kg = 1 L
Molarity = 0.17 mol / 2 L
Molarity = 0.085 mol/L
Molarity = 0.085 M
We can apply Newton's third law of motion in roller coaster.
Explanation:
- If we are planning to make a roller coaster with elevations and turn then we need to apply newton’s law of motions, kinetic energy and potential energy.
- Newton’s third law of motion says that “ for every action, there is an equal and opposite reaction”. Newton’s third law of motion applies between the tract and ride vehicles.
- If we neglect the air resistance and friction, Roller coaster car will always experience two types of forces which are gravitational force and normal force. The normal force is acting perpendicular to the track and gravitational for is also acting downwards.
- Whenever the tracts get moving the gravitational force is attracting roller coaster to downward. So this will get accelerates. In the majority of the roller coasters, the hill will decrease with height as the train moves along the tract.
I Cant Answer your question but maybe this will help
Volume Changes for Gases
Particles in a gas have more freedom of movement than they do in a liquid. According to the ideal gas law, the pressure (P) and volume (V) of a gas are mutually dependent on temperature (T) and the number of moles of gas present (n). The ideal gas equation is PV = nRT, where R is a constant known as the ideal gas constant. In SI (metric) units, the value of this constant is 8.314 joules ÷ mole - degree K.
Pressure is constant: Rearranging this equation to isolate volume, you get: V = nRT ÷ P, and if you keep the pressure and number of moles constant, you have a direct relationship between volume and temperature: ∆V = nR∆T ÷ P, where ∆V is change in volume and ∆T is change in temperature. If you start from an initial temperature T0 and pressure V0 and want to know the volume at a new temperature T1 the equation becomes:
V1 = [n • R • (T1 - T0) ÷ P] +V0
Temperature is constant: If you keep the temperature constant and allow pressure to change, this equation gives you a direct relationship between volume and pressure:
V1 = [n • R • T ÷ (P1 - P0)] + V0
Notice that the volume is larger if T1 is larger than T0 but smaller if P1 is larger than P0.
Pressure and temperature both vary: When both temperature and pressure vary, the the equation becomes:
V1 = n • R • (T1 - T0) ÷ (P1 - P0) + V0
Plug in the values for initial and final temperature and pressure and the value for initial volume to find the new volume.
Answer:
1008.0 kJ.
Explanation:
- Firstly, we need to calculate the no. of moles of 88.0 g of propane:
<em>n = mass/molar mass </em>= (88.0 g)(/(44.0 g/mol) = <em>2.0 mol.</em>
∴ The combustion of 2.0 moles of propane produces 4032.0 kJ.
<em><u>Using cross multiplication: </u></em>
The combustion of 2.0 moles of propane produces → 4032.0 kJ.
The combustion of 0.5 moles of propane produces → ??? kJ.
<em>∴ The amount of heat released for the combustion of 0.5 moles of propane </em>= (4032.0 kJ)(0.5 mol)/(2.0 mol) = <em>1008.0 kJ.</em>