"One possibility is that the battle between the virus and your immune system can take as long as two weeks.
It could be the immune system holds the virus at bay,” said Tompkins.
Or, your immune system has to work so hard that after two weeks it’s inflamed and that’s what makes you feel bad.
Answer:
B. 1.65 L
Explanation:
Step 1: Write the balanced equation
2 SO₂(g) + O₂(g) ⇒ 2 SO₃(g)
Step 2: Calculate the moles of SO₂
The pressure of the gas is 1.20 atm and the temperature 25 °C (298 K). We can calculate the moles using the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.20 atm × 1.50 L / (0.0821 atm.L/mol.K) × 298 K = 0.0736 mol
Step 3: Calculate the moles of SO₃ produced
0.0736 mol SO₂ × 2 mol SO₃/2 mol SO₂ = 0.0736 mol SO₃
Step 4: Calculate the volume occupied by 0.0736 moles of SO₃ at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
0.0736 mol × 22.4 L/1 mol = 1.65 L
Answer:
The mass of CH4 is 60, 29 grams.
Explanation:
We use the weight of the atoms C and H for calculate the molar mass:
Weight of CH4= weight C+ 4 x weight H= 12,01 g/mol +4 x 1,008g/mol=
Weight of CH4 =16, 042 g/mol
1molCH4-----16, 042grams
3,758 mol CH4--X= (3,758 mol CH4 x 16, 042 grams)/1 mol CH4=60,285836 grams
Answer:
The molarity of the formed CaBr2 solution is 0.48 M
Explanation:
Step 1: Data given
Number of moles CaBr2 = 0.72 moles
Volume of water = 1.50 L
Step 2: Calculate the molarity of the solution
Molarity of CaBr2 solution = moles CaBr2 / volume water
Molarity of CaBr2 solution = 0.72 moles / 1.50 L
Molarity of CaBr2 solution = 0.48 mol / = 0.48 M
The molarity of the formed CaBr2 solution is 0.48 M
The condensation polymerization process is being demonstrated, where two molecules come together to form a larger molecule while releasing a smaller molecule, in this case water.