Answer:
a) The formal charge on N is 0 in both species.
Explanation:
The formal charge is calculated using the formular;
FC = V-N-B/2
Where;
V = Number of Valence electrons
N = number of nonbonding valence electrons
B = total number of electrons shared in bonds
In NO2-;
The formal charge of N is given as;
FC = 5 - 2 - 6/2
FC = 0
In HNO2
The formal charge of N is given as;
FC = 0
The correct option is;
a) The formal charge on N is 0 in both species.
From the equation, we see that the molar ratio of Fe : S required is:
8 : 1
The moles of Fe present are: 9.42/56 = 0.168
Moles of S = 68/(32 * 8) = 0.265
The molar ratio is:
1 : 1.6
Therefore, iron is the limiting reactant as it is present in a ratio lower than that required. The ratio of
Fe : FeS is
1 : 1
So 0.168 moles of FeS will form. The mass of FeS will be:
Mass = 0.168 * (56 + 32)
Mass = 14.78 grams
14.78 grams of FeS will be formed.
If an organism reproduces quickly, its population can evolve faster.
Explanation:
It is known that
value of acetic acid is 4.74. And, relation between pH and
is as follows.
pH = pK_{a} + log ![\frac{[CH_{3}COOH]}{[CH_{3}COONa]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOOH%5D%7D%7B%5BCH_%7B3%7DCOONa%5D%7D)
= 4.74 + log 
So, number of moles of NaOH = Volume × Molarity
= 71.0 ml × 0.760 M
= 0.05396 mol
Also, moles of
= moles of 
= Molarity × Volume
= 1.00 M × 1.00 L
= 1.00 mol
Hence, addition of sodium acetate in NaOH will lead to the formation of acetic acid as follows.

Initial : 1.00 mol 1.00 mol
NaoH addition: 0.05396 mol
Equilibrium : (1 - 0.05396 mol) 0 (1.00 + 0.05396 mol)
= 0.94604 mol = 1.05396 mol
As, pH = pK_{a} + log ![\frac{[CH_{3}COONa]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOONa%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)
= 4.74 + log 
= 4.69
Therefore, change in pH will be calculated as follows.
pH = 4.74 - 4.69
= 0.05
Thus, we can conclude that change in pH of the given solution is 0.05.
<h3>
Answer:</h3>
1031.4 Calories.
<h3>
Explanation:</h3>
We are given;
Mass of the copper metal = 50.0 g
Initial temperature = 21.0 °C
Final temperature, = 75°C
Change in temperature = 54°C
Specific heat capacity of copper = 0.382 Cal/g°C
We are required to calculate the amount of heat in calories required to raise the temperature of the copper metal;
Quantity of heat is given by the formula,
Q = Mass × specific heat capacity × change in temperature
= 50.0 g × 0.382 Cal/g°C × 54 °C
= 1031.4 Calories
Thus, the amount of heat energy required is 1031.4 Calories.