Answer:
Empirical formula = C₃S₂
Explanation:
Given data:
Mass of carbon = 44.0 mg (44/1000 = 0.044 g)
Mass of sulfur = 122 mg - 44.0 mg = 78 mg = 78/1000 = 0.078 g)
Empirical formula = ?
Solution:
First of all we will calculate the number of moles.
Number of moles of carbon = mass / molar mass
Number of moles of carbon = 0.044 g/ 12.01 g/mol
Number of moles of carbon = 0.0037 mol
Number of moles of sulfur:
Number of moles = mass / molar mass
Number of moles = 0.078 g/ 32,066 g/mol
Number of moles = 0.0024 mol
Now we will compare the moles:
C : S
0.0037/0.0024 : 0.0024/0.0024
1.5 : 1
C : S = 2(1.5 : 1)
C : S = 3 : 2
Empirical formula = C₃S₂
<span>Carbon Monoxide.
First, determine the relative number of moles of each element by looking up the atomic weights of carbon and oxygen
Atomic weight carbon = 12.0107
Atomic weight oxygen = 15.999
Moles of Carbon = 24.50 g / 12.0107 g/mol = 2.039847802 mol
Moles of Oxygen = 32.59 g / 15.999 g/mol = 2.037002313 mol
Given that the number of moles of both carbon and oxygen are nearly identical, it wouldn't be unreasonable to think that the empirical formula for the compound is CO which also happens to be the formula for Carbon Monoxide.</span>
The answer is C.
Alpha particles are simply helium-4 nuclei, with 2 protons and 2 neutrons. Charge is 2+, and mass is on the order of 4amu. Beta particles are either electrons or positrons, with charges of 1- and 1+ respectively. Their masses are fractions of amu, so alpha particles and beta particles differ in both mass and charge.
Answer: Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science.
I making my page look smart :)
Ok I’m figuring this one out