Answer:
= 17º C
Explanation:
This is a calorimetry problem, where heat is yielded by liquid water, this heat is used first to melt all ice, let's look for the necessary heat (Q1)
Let's reduce the magnitudes to the SI system
Ice m = 80.0 g (1 kg / 1000 g) = 0.080 kg
L = 3.33 105 J / kg
Water M = 860 g = 0.860 kg
= 4186 J / kg ºC
Q₁ = m L
Q₁ = 0.080 3.33 10⁵
Q₁ = 2,664 10⁴ J
Now let's see what this liquid water temperature is when this heat is released
Q = M
ΔT = M
(T₀₁ -
)
Q₁ = Q
= T₀₁ - Q / M ce
= 26.0 - 2,664 10⁴ / (0.860 4186)
= 26.0 - 7.40
= 18.6 ° C
The initial temperature of water that has just melted is T₀₂ = 0ª
The initial temperature of the liquid water is T₀₁= 18.6
m
+ M
= M
T₀₁ - m
T₀₂o2
= (M To1 - m To2) / (m + M)
= (0.860 18.6 - 0.080 0) / (0.080 + 0.860)
= 17º C
gg
Answer;
7.238°
Explanation
From question we know that the grating has 1,970 grooves per centimeter, we can convert to from (cm) to (nm) for unit consistency
The slit separation is expressed below
d=1cm/1970
d=0.0005076
=5076nm
Then the angle (in degrees) that the red light of wavelength 640 nm appear in first order can be calculated using expression below
Sin(x)= mλ/d
Where λ= wavelength=640 nm
d=slit separation
Sin(x)= mλ/d
Sin(x)=(1×640)/5076
=0.126
sin-1(0.126)
X= 7.238°
Therefore,the angle (in degrees) that the red light of wavelength 640 nm appear in first order is 7.238°
The potential energy is most often referred to as the "energy at rest" and is dependent on the elevation of an object. This can be calculated through the equation,
E = mgh
where E is the potential energy, m is the mass, g is the acceleration due to gravity, and h is the height. In this item, we are not given with the mass of the cart so we assume it to be m. The force is therefore,
E = m(9.8 m/s²)(0.5 m) = 4.9m
Hence, the potential energy is equal to 4.9m.
Answer:
Pressure
Surface
Flow
Fluency
Explanation:
*Surface
The surface tension is the force with which the surface molecules of a liquid are attracted to bring them inside and thus decrease the surface area.
*Flow
It is defined as resistance to flow. The viscosity of a liquid depends on the intermolecular forces:
-The higher the intermolecular forces of a liquid, its molecules have a greater difficulty moving between them, therefore the substance is more viscous.
-Liquids that are made up of long, flexible molecules that can bend and tangle with each other are more viscous.
* Pressure
if the molecules of the liquid have a greater intensity of intermolecular force, then they will be trapped in the liquid and will have less facility to pass into the gas phase.
on the contrary to lower intensity of intermolecular force, then the molecules can escape more easily to the gaseous state.
*Fluency
This property allows liquids to easily pass through a hole regardless of size, as long as this hole is at a lower or the same level of the container where the liquid is stored.
This property indicates the deformability of a liquid which is very wide without requiring mechanical stress.