The answer is:
B. <span>X: Work is done to the system and temperature increases.
Y: Work is done by the system and temperature decreases.</span>
1) In the reference frame of one electron: 0.38c
To find the relative velocity of one electron with respect to the other, we must use the following formula:

where
u is the velocity of one electron
v is the velocity of the second electron
c is the speed of light
In this problem:
u = 0.2c
v = -0.2c (since the second electron is moving towards the first one, so in the opposite direction)
Substituting, we find:

2) In the reference frame of the laboratory: -0.2c and +0.2c
In this case, there is no calculation to be done. In fact, we are already given the speed of the two electrons; we are also told that they travel in opposite direction, so their velocities are
+0.2c
-0.2c
Answer:
<em>The magnetic field through the coil at first increases steadily up to its maximum value, and then decreases gradually to its minimum value.</em>
<em></em>
Explanation:
At first, the magnet fall towards the coils; inducing a gradually increasing magnetic field through the coil as it falls into the coil. At the instance when half the magnet coincides with the coil, the magnetic field magnitude on the coil is at its maximum value. When the magnet falls pass the coil towards the floor, the magnetic field then starts to decrease gradually from a strong magnitude to a weak magnitude.
This action creates a changing magnetic flux around the coil. The result is that an induced current is induced in the coil, and the induced current in the coil will flow in such a way as to oppose the action of the falling magnet. This is based on lenz law that states that the induced current acts in such a way as to oppose the motion or the action that produces it.
Answer:
= 5/9
Explanation:
This is an exercise that we can solve using Archimedes' principle which states that the thrust is equal to the weight of the desalted liquid.
B = ρ_liquid g V_liquid
let's write the translational equilibrium condition
B - W = 0
let's use the definition of density
ρ_body = m / V_body
m = ρ_body V_body
W = ρ_body V_body g
we substitute
ρ_liquid g V_liquid = ρ_body g V_body
In the problem they indicate that the ratio of densities is 5/9, we write the volume of the bar
V = A h_bogy
Thus
we substitute
5/9 = 