True Requires the development of theories that can be tested by systematic research.
Answer:
c. both have same energy
Explanation:
The complete question is
suppose you have two cans, one with milk, and the other with refried beans. The cans have essentially the same size, shape, and mass. If you release both cans at the same time, on a downhill ramp, which can has more energy at the bottom of the ramp? ignore friction and air resistance..
a. can with beans
b. can with milk
c. both have same energy
please explain your answer
Since both cans have the same size, shape, and mass, and they are released at the same height above the ramp, they'll possess the same amount of mechanical energy. This is because their mechanical energy, which is the combination of their potential and kinetic energy are both dependent on their mass. Also, having the same physical quantities like their size and shape means that they will experience the same environmental or physical factors, which will be balanced for both.
Answer:
Explanation:
From the question we are told that
Distance b/w plate
P_1 Potential at 7.35
Generally the equation for electric field at a distance is mathematically given as
Answer : The energy of one photon of hydrogen atom is,
Explanation :
First we have to calculate the wavelength of hydrogen atom.
Using Rydberg's Equation:
Where,
= Wavelength of radiation
= Rydberg's Constant = 10973731.6 m⁻¹
= Higher energy level = 3
= Lower energy level = 2
Putting the values, in above equation, we get:
Now we have to calculate the energy.
where,
h = Planck's constant =
c = speed of light =
= wavelength =
Putting the values, in this formula, we get:
Therefore, the energy of one photon of hydrogen atom is,
75 percent (calculated percentage %) of what number equals 27? Answer: 36.