Answer:
A) 6.00 mol.
B) 0.375 L or 375 mL
C) 6.00 M
Explanation:
Hello,
A) In this case, from the definition of molarity, we compute the moles for the given volume and concentration:

B) In this case, from the stock solution, the required volume is:

C) In this case, we apply the following formula for dilution process:

Thus, solving for the final molarity, we obtain:

Regards.
Answer:
It converts The liquid into a gas at the same temperature.
Explanation:
Answer: b. One atom transferring electrons to another atom
Explanation: An ionic bond is formed when an element completely transfers its valence electron to another element. The element which donates the electron is known as electropositive element and the element which accepts the electrons is known as electronegative element. This bond is formed between a metal and an non-metal.
Covalent bonds are formed by sharing of electrons between non metals
For example, In calcium iodide the one electron from calcium metal gets transferred to iodine atom and thus form an ionic bond to give 
Electronic configuration of calcium:
![[Ca]=1s^22s^22p^63s^23p^64s^2](https://tex.z-dn.net/?f=%5BCa%5D%3D1s%5E22s%5E22p%5E63s%5E23p%5E64s%5E2)
Calcium atom will lose two electron to gain noble gas configuration and form calcium cation with +2 charge.
![[Ca^{2+}]=1s^22s^22p^63s^23p^6](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%3D1s%5E22s%5E22p%5E63s%5E23p%5E6)
Electronic configuration of iodine:
![[I]=1s^22s^22p^63s^23p^64s^23d^{10}4p^5](https://tex.z-dn.net/?f=%5BI%5D%3D1s%5E22s%5E22p%5E63s%5E23p%5E64s%5E23d%5E%7B10%7D4p%5E5)
Iodine atom will gain one electron to gain noble gas configuration and form iodide ion with -1 charge.
![[I^-]=1s^22s^22p^63s^23p^64s^23d^{10}4p^6](https://tex.z-dn.net/?f=%5BI%5E-%5D%3D1s%5E22s%5E22p%5E63s%5E23p%5E64s%5E23d%5E%7B10%7D4p%5E6)
<h3><u>Answer;</u></h3>
C.The oxidation state of all the atoms should change.
<h3><u>Explanation;</u></h3>
- A redox reaction which is oxidation-reduction reaction is a type of chemical reaction that involves a transfer of electrons between two species.
- An oxidation-reduction reaction is any chemical reaction in which the oxidation number of a molecule, atom, or ion changes by gaining or losing an electron.
- In a redox reaction, the total number of electrons lost by the reducing agent must be equal to the number of electrons gained by the oxidizing agent.