Answer:
Mg(NO4)2 is 180.3 g/mol
Explanation:
First find the substance formula.
Magnesium Nitrate.
Magnesium is a +2 charge.
Nitrate is a -1 charge.
So to balance the chemical formula,
We need 1 magnesium atom for every nitrate atom.
2(1) + 1(-2) = 0
So the substance formula is Mg(NO4)2.
Now find the molar mass of Mg(NO4)2.
Mg = 24.3 amu
N = 14.0 amu
O = 16.0 amu
They are three nitrogen and twelve oxygen atoms.
So you do this: 24.3 + 14.0(2) + 16.0(8) = 180.3 g/mol
So the molar is mass is 180.3 g/mol.
The final answer is Mg(NO4)2 is 180.3 g/mol
Hope it helped!
Answer:
d. The gold(III) ion is most easily reduced.
Explanation:
The standard reduction potentials are
Au³⁺ + 3e⁻ ⟶ Au; 1.50 V
Hg²⁺ + 2e⁻ ⟶ Hg; 0.85 V
Zn²⁺ + 2e⁻ ⟶ Zn; -0.76 V
Na⁺ + e⁻ ⟶ Na; -2.71 V
A <em>more positive voltage</em> means that there is a <em>stronger driving force</em> for the reaction.
Thus, Au³⁺ is the best acceptor of electrons.
Reduction Is Gain of electrons and, Au³⁺ is gaining electrons, so
Au³⁺ is most easily reduced.
A mirror is opaque, meaning that it reflects the light and images that shine on it's reflective surface.
Answer:
pH = 3.02
Explanation:
Acetic Acid is a weak acid (HOAc) that ionizes only ~1.5% as follows:
HOAc ⇄ H⁺ + OAc⁻.
In pure water the hydronium ion concentration [H⁺] equals the acetate ion concentration [OAc⁻] and can be determined* using the formula [H⁺] = [OAc⁻] = SqrRt(Ka·[acid]) = SqrRt(1.8x10⁻⁵ x 0.0500)M = 9.5x10⁻⁴M.
By definition, pH = -log[H⁺] = -log(9.5x10⁻⁴) = 3.02
______________________________________________________
*This formula can be used to determine the [H⁺] & [Anion⁻] concentrations for any weak acid in pure water given its Ka-value and the molar concentration of acid in solution.