Answer:
B. The products are nuclei of elements that are different from the original elements.
The free energy change(Gibbs free energy-ΔG)=-8.698 kJ/mol
<h3>Further explanation</h3>
Given
Ratio of the concentrations of the products to the concentrations of the reactants is 22.3
Temperature = 37 C = 310 K
ΔG°=-16.7 kJ/mol
Required
the free energy change
Solution
Ratio of the concentration : equilbrium constant = K = 22.3
We can use Gibbs free energy :
ΔG = ΔG°+ RT ln K
R=8.314 .10⁻³ kJ/mol K

Answer:
E. None of these
Explanation:
We know, By GAS laws,
PV = NRT, where p- pressure, v- volume, n- number of moles, R- gas constant ,and T- temperature
Now, In the question, the number of moles remains the same as the gas is the same. so n is constant so we can compare n before and after a temperature change.
= 
where P1= 1 atm, P2 = 10 atm, V1= 20 mL, T1= 10°C and T2= 100°C
We don't have to worry about the standard units as they are present equally on both the sides and get cut, same goes for R( gas constant)
So putting values, we get

Cutting, R on both sides and moving contents to the right so that only V2 is left on the left.

∴ V2 = 
∴ V2 = 20mL
Amount of oxygen in the compound = 160 g
Amount of oxygen in the compound = 20.2 gm
Mole of oxygen in the compound = 160/16
= 10 moles
Mole of hydrogen in the compound = 20.2/1.01
= 20 moles
Then
The ratio of oxygen to ration of hydrogen = 1:2
So
The empirical formula of the compound is H2O. I hope the answer has come to your help.
Answer: Anna stated that ionic compounds have high melting point and low boiling point. The error in the statement is that ionic compound have low boiling point, instead ionic compounds have high boiling point, because in an ionic compound, the force of attraction working between two ions is very strong and hence the bonds present are very strong, and a lot of energy is needed to break them