1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leonid [27]
3 years ago
13

If the particles of an object have more kinetic energy than the particles of an object, what must be true?

Physics
1 answer:
son4ous [18]3 years ago
7 0

If the objects comprise a gas, then the first object contains more
thermal energy (heat) than the second object.

If the objects are solid, then you can't draw any conclusion unless
both objects have the same total mass. If that's the case, then the
first object must be moving faster than the second one.


You might be interested in
The floor of a railroad flatcar is loaded with loose crates having a coefficient of static friction of 0.32 with the floor. If t
coldgirl [10]

Answer:

The shortest braking distance is 35.8 m

Explanation:

To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down

On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis

    Y axis

     N- W = 0

     N = W = mg

  X axis

     -Fr = m a

     -μ N = m a

     -μ mg = ma

     a = μ g

     a  = - 0.32 9.8

     a =  - 3.14 m/s²

We calculate the distance using the kinematics equations

    Vf² = Vo² + 2 a x

     x = (Vf² - Vo²) / 2 a

When the train stops the speed is zero (Vf = 0)

 Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s

     x = ( 0 - 15²) / 2 (-3.14)

     x=  35.8 m

The shortest braking distance is  35.8 m

7 0
2 years ago
You are traveling on an airplane. The velocity of the plane with respect to the air is 110.0 m/s due east. The velocity of the a
Mice21 [21]
1. Vpa = 180m/s. @ 0 deg.
  Vag = 40m/s @ 120 deg,CCW.


<span> Vpg = Vpa + Vag,
 Vpg = (180 + 40cos120) + i40sin120,
  Vpg = 160 + i34.64,
 Vpg=sqrt((160)^2 + (34.64)^2)=163.7m/s.
</span>
<span>2. tanA = Y / X = 34.64 / 160 = 0.2165,
  A = 12.2 deg,CCW. = 12.2deg. North of East. </span>

3.  1 hr = 3600s. <span>d = Vt = 163.7m/s * 3600s = 589,320m.

hope this helps</span>
8 0
2 years ago
A block–spring system vibrating on a frictionless, horizontal surface with an amplitude of 7.0 cm has an energy of 14 J. If the
Bingel [31]

Answer:

E_T= 28J

Explanation:

The energy of Mass-Spring System the sum of the potential energy of the block plus the kinetic energy of the block:

E_T=U+K=\frac{1}{2} k \Delta x^2+\frac{1}{2} mv^2

Where:

\Delta x=Amplitude\hspace{3}or\hspace{3}d eformation\hspace{3} of\hspace{3} the\hspace{3} spring\\m=Mass\hspace{3}of\hspace{3}the\hspace{3}block\\k=Constant\hspace{3}of\hspace{3}the\hspace{3}spring\\v=Velocity\hspace{3}of\hspace{3}the\hspace{3}block

There are two cases, the first case is when the spring is compressed to its maximum value, in this case the value of the kinetic energy is zero, since there is no speed, so:

E_T=\frac{1}{2} k \Delta x^2\\\\14=\frac{1}{2} k7^2\\\\Solving\hspace{3} for\hspace{3} k\\\\k=\frac{28}{49} =\frac{4}{7}

The second case is when the block passes through its equilibrium position, in this case the elastic potential energy is zero since \Delta x=0, so:

E_T=\frac{1}{2} mv^2\\\\14=\frac{1}{2} mv^2\\\\Solving\hspace{3} for\hspace{3} v\\\\v^2=\frac{28}{m}

Now, let's find the energy of the system when the block is replaced by one whose mass is twice the mass of the original block using the previous data:

E_T=U+K=\frac{1}{2} k \Delta x^2+\frac{1}{2} m_2v^2

Where in this case:

m_2=New\hspace{3}mass=Twice\hspace{3} the\hspace{3} mass \hspace{3}of\hspace{3} the\hspace{3} original=2m

Therefore:

E_T=\frac{1}{2} (\frac{4}{7} ) (7^2)+\frac{1}{2} (2m)(\frac{28}{m_2})=\frac{1}{2} (\frac{4}{7} ) (7^2)+\frac{1}{2} (2m)(\frac{28}{2m})=14+14=28J

8 0
3 years ago
Need Help.
zaharov [31]
Newton’s fifth law says so i’m sorry it’s just logic
7 0
2 years ago
If a car accelerates at a uniform 4.0 m/s, how long will it take to reach a speed of 36.0 m/s,
11111nata11111 [884]

Answer:

9s

Explanation:

v=u+at

36=0+4t

t=36-0/4

t=9s

5 0
3 years ago
Other questions:
  • ¿CUAL ES LA CAUSA DE UNA ONDA ESTACIONARIA?
    5·1 answer
  • (this is somehow part of my science unit, dont ask why)
    15·1 answer
  • The nearest star to the Earth is the red dwarf star Proxima Centauri, at a distance of 4.218 light-years. Convert this distance
    9·1 answer
  • 1. A giri rides her bike at 15 m/s for 20 s. How far does she travel in that time?
    6·2 answers
  • Leandra is baking cookies , and they are ready to come out of the oven . Before she takes them out of the oven , she puts her mi
    5·1 answer
  • A stone is thrown horizontally at a speed of 10.0 m/s from the top of a cliff 139.4 m high.
    7·1 answer
  • A car on a freeway speeds up to get around another car. The car speeds up from 20 m/s to 35 m/s in 5 seconds.
    6·1 answer
  • Can anyone help me with this question please <br> I’ll mark as brainliest <br> No links.
    7·2 answers
  • Seth and Diana were asked to be the leaders for a game of tag during recess at school. Seth and Diana can ensure that all intere
    13·1 answer
  • Q/C An undersea earthquake or a landslide can produce an ocean wave of short duration carrying great energy, called a tsunami. W
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!