Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m
1. Vpa = 180m/s. @ 0 deg.
Vag = 40m/s @ 120 deg,CCW.
<span>
Vpg = Vpa + Vag,
Vpg = (180 + 40cos120) + i40sin120,
Vpg = 160 + i34.64,
Vpg=sqrt((160)^2 + (34.64)^2)=163.7m/s.
</span>
<span>2. tanA = Y / X = 34.64 / 160 = 0.2165,
A = 12.2 deg,CCW. = 12.2deg. North of
East. </span>
3. 1 hr = 3600s. <span>d = Vt = 163.7m/s * 3600s = 589,320m.
hope this helps</span>
Answer:
Explanation:
The energy of Mass-Spring System the sum of the potential energy of the block plus the kinetic energy of the block:

Where:

There are two cases, the first case is when the spring is compressed to its maximum value, in this case the value of the kinetic energy is zero, since there is no speed, so:

The second case is when the block passes through its equilibrium position, in this case the elastic potential energy is zero since
, so:

Now, let's find the energy of the system when the block is replaced by one whose mass is twice the mass of the original block using the previous data:

Where in this case:

Therefore:

Newton’s fifth law says so i’m sorry it’s just logic