From the curve on the graph we can see, when y=50 x=4.5
the unit of x-axis is in "billions of years", so the answer is 4.5 billions of years
<h2>The different forces acting on the ball while its in air</h2>
Amy throws a softball through the air. Applied, drag and gravitational forces are acting on the ball while it’s in the air. The softball experiences force as a result of Amy’s throw. As the ball moves, it experiences from the air it passes through.
It also experiences a downward pull because earth has the property to attract everything which is on the earth towards it. The ball is moving in the air but earth applies force on the ball to get back on the ground. Hence, in this way, gravitational force applies.
There is also a drag force which results due to friction that is present in the air. It resist to move ball in the air and there will also be applied force which is given by a person who throws by applying force.
Answer:
option D
Explanation:
given,

increase the intensity by factor of 9
I₁ = I₀
I₂ = 9 I₀
now,




A₂ = 3 A₁
hence, amplitude increase with the factor of 3
so, the correct answer is option D
Speed with which initially car is moving is 21 m/s
Reaction time = 0.50 s
distance traveled in the reaction time d = v t
d = 21 * 0.50 = 10.5 m
deceleration after this time = -10 m/s^2
now the distance traveled by the car after applying bakes



so total distance moved before it stop
d = 22.05 + 10.5 = 32.55 m
so the distance from deer is 35 - 32.55 = 2.45 m
now to find the maximum speed with we can move we will assume that we will just touch the deer when we stop
so our distance after brakes are applied is d = 35 - 10.5 = 24.5 m
again by kinematics



so maximum speed would be 22.1 m/s