Answer:
the intensity of the sun on the other planet is a hundredth of that of the intensity of the sun on earth.
That is,
Intensity of sun on the other planet, Iₒ = (intensity of the sun on earth, Iₑ)/100
Explanation:
Let the intensity of light be represented by I
Let the distance of the star be d
I ∝ (1/d²)
I = k/d²
For the earth,
Iₑ = k/dₑ²
k = Iₑdₑ²
For the other planet, let intensity be Iₒ and distance be dₒ
Iₒ = k/dₒ²
But dₒ = 10dₑ
Iₒ = k/(10dₑ)²
Iₒ = k/100dₑ²
But k = Iₑdₑ²
Iₒ = Iₑdₑ²/100dₑ² = Iₑ/100
Iₒ = Iₑ/100
Meaning the intensity of the sun on the other planet is a hundredth of that of the intensity on earth.
Military personnel also use periscopes in some gun turrets and in armoured vehicles. More complex periscopes using prisms or advanced fibre optics instead of mirrors and providing magnification operate on submarines and in various fields of science
66666666666666666666666666666666666666666666666666666666666666666666666666666666666666
Answer:
t = 444.125 sec
Explanation:
Given data:
V = 24 volt
I = 0.1 ampere
mass of water mw = 51 gm
cr = 4.18 J/gm degree K^-1
mass of resistor = 8 gm
cr = 3.7 J/gm degree K^-1
we know that power is given as
Power P = VI
But P =E/t
so equating both side we have

solving for t


t = 444.125 sec