Answer:
The magnetic field in the center of the solenoid is
.
Explanation:
Given that,
Length of solenoid = 0.425 m
Number of turns N = 950
Current I = 2.75 A
The magnetic field in the center of the solenoid is the product of the current , number of turns per unit length and permeability.
In mathematical form,

Where, 
N = number of turns
L = length
I = current
Now, The magnetic field

Put the value into the formula



Hence, The magnetic field in the center of the solenoid is
.
Answer:
This question is incomplete
Explanation:
This question is incomplete. However, the formula to be used here is
ω = 2π/T
Where ω is the angular frequency (in rad/s)
T is the period - the time taken for Block A to complete one oscillation and return to it's original position.
To solve for this period T, the formula below should be used
T = 2π√m/k
where m is the mass of the object (Block A) and k is the spring constant (281 J/m²)
Answer:
A) 12.57 m
B) 5 RPM
C) 3.142 m/s
Explanation:
A) Distance covered in 1 Revolution:
The formula that gives the relationship between the arc length or distance covered during circular motion to the angle subtended or the revolutions, is given as follows:
s = rθ
where,
s = distance covered = ?
r = radius of circle = 2 m
θ = Angle = 2π radians (For 1 complete Revolution)
Therefore,
s = (2 m)(2π radians)
<u>s = 12.57 m</u>
B) Angular Speed:
The formula for angular speed is given as:
ω = θ/t
where,
ω = angular speed = ?
θ = angular distance covered = 15 revolutions
t = time taken = 3 min
Therefore,
ω = 15 rev/3 min
<u>ω = 5 RPM</u>
C) Linear Speed:
The formula that gives the the linear speed of an object moving in a circular path is given as:
v = rω
where,
v = linear speed = ?
r = radius = 2 m
ω = Angular Speed in rad/s = (15 rev/min)(2π rad/1 rev)(1 min/60 s) = 1.571 rad/s
Therefore,
v = (2 m)(1.571 rad/s)
<u>v = 3.142 m/s</u>
Answer:first of all what is your question and i can give and example which is Use them when you have 2 forces named Fa & FF or Fg & Ff acting in opposite directions on an object and you need to know the resultant of your 2 forces.
Explanation:
i searched it up