Answer:
(a) 0.345 T
(b) 0.389 T
Solution:
As per the question:
Hall emf, 
Magnetic Field, B = 0.10 T
Hall emf, 
Now,
Drift velocity, 

Now, the expression for the electric field is given by:
(1)
And

Thus eqn (1) becomes
where
d = distance
(2)
(a) When 

(b) When 

<span>So when two metals of equal mass but different heat capabilities are subjected to same heat quantity, the metal with higher heat capacity have the small temperature change. Heat supplied is determined as heat capacity of the metal times the change in temperature.</span>
When firing straight up:
v^2 = u^2 - 2gh, where v = final velocity = 0, u = initial velocity, g = gravitational acceleration, h = maximum height attained.
Then,
0 = u^2 - 2gh
u = Sqrt (2gh) ---- (1)
When firing at 45°,
Initial velocity, U = u Sin 45 = Sqrt (2gh)·Sin 45
Maximum height, H = U^2*(Sin Ф)^2/2g
substituting;
H = [Sqrt (2gh)·Sin 45]^2*(Sin 45)^2]/2g
H = [2gh*(Sin 45)^2*(Sin 45)^2]/2g
H = [h*(Sin 45)^4] = h/4
Therefore, maximum height when the gun fires at 45° is a quarter of maximum height when the gun fires vertically up.
Answer:
fluorescent bulb
Explanation:
A fluorescent bulb is what produces light.
It produces light by passing electric current through a gas to
A fluorescent lamp, is a low-pressure mercury vapor and a gas-discharge lamp that uses fluorescence to produce visible light. like the ones we see. An electric current in the gas excites mercury vapor, and that produces a short wave ultraviolet light and well that causes a phosphor coating on the inside of the lamp to glow. i tried making this sound as simple as possible.
i hope this really helps you !! thanks this and mark this as brainliest !!!