I'd answer that but I can't text graphs and tables...
Freezing point of the water is known as 273 K
Hope this helps!
<h3><u>Answer;</u></h3>
Higher temperatures
A wave will go faster through a liquid at <em><u>highe</u></em><u>r </u>temperatures
<h3><u>Explanation;</u></h3>
- <em><u>Mechanical waves are types of waves that require a material medium for transmission.</u></em> An example of mechanical wave is the sound wave whose transmission occurs in medium such as solids, liquids and gases.
- <em><u>The transmission of mechanical waves involves vibration of particles through the medium of transmission, thus transfer of energy from one point to another. </u></em>The vibration of particle may be in the form of a longitudinal wave or a transverse wave.
- <em><u>Increasing the temperature in a medium increases the kinetic energy of the particles in the medium and thus increasing the speed at which the particles vibrates and thus aiding a faster transmission of a wave.</u></em>
Use the eq. of Young modulus Y=(F/A)/(∆l/lo)
dimana ∆l is the elongation of wire, lo is its initial length.
So ∆l = (F/A)lo/Y.
∆l = (1000N/(6.5 × 10^-7 m^2))×(2.5m)/(2.0 × 10^-11 N/m^2)
Use calculator to finish it.
Explanation:
PE = mgz = 200 * 9.81 *1000 = 1962 KJ