Potential energy is a relative measure, so the answer is dependent on the assumptions we make. The potential energy in the car is going to be gravitational potential energy(PE). PE = mgh, where m is the mass, g is 9.8 m/s^2, and h is the height. So PE = 2000*9.8*h = 19600h. The final answer obviously depends on h. Most likely the problem is assuming that 30 meters under the top of the hill is considered 0 meters. Then h would be 30m and PE would equal 588 kJ.
You need the kinematic equation for distance as a function of acceleration:
![d = [v(initial) *t] + 0.5a*t^{2}](https://tex.z-dn.net/?f=d%20%3D%20%5Bv%28initial%29%20%2At%5D%20%2B%200.5a%2At%5E%7B2%7D)
where a = gravitational acceleration 9.8m/s^{2}
v(initial) = starting velocity
t = time of fall
if the stone started at rest then v(initial) = 0 making the equation simply

Let me know if you still need further help :)
Answer:
The formula of energy is m
. So, energy is M
. Since velocity = displacement/time.
Explanation:
If you have any questions feel free to ask in the comments - Mark
Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s