Answer:
(1) cathode: Y
(2) anode X
(3) electrons in the wire flow toward: Y
(4) electrons in the wire flow away from: X
(5) anions from the salt bridge flow toward X
(6) cations from the salt bridge flow toward Y
(7) gains mass: Y
(8) looses mass X
Explanation:
The voltaic cell uses two different metal electrodes, each in an electrolyte solution. The anode will undergo oxidation and the cathode will undergo reduction. The metal of the anode will oxidize, going from an oxidation state of 0 (in the solid form) to a positive oxidation state, and it will become an ion. At the cathode, the metal ion in the solution will accept one or more electrons from the cathode, and the ion’s oxidation state will reduce to 0. This forms a solid metal that deposits on the cathode. The two electrodes must be electrically connected to each other, allowing for a flow of electrons that leave the metal of the anode and flow through this connection to the ions at the surface of the cathode. This flow of electrons is an electrical current that can be used to do work, such as turn a motor or power a light.
The oxidation number of H is -1.
Sum of the oxidation numbers in each element =
charge of the complex
CaH₂ has 1 Ca atom and 2H atoms. The charge of
the complex is zero. Let’s say Oxidation number of H is "a".
Then,
<span> (+2)
+ 2 x a = 0 </span>
<span> +2 + 2a = 0</span>
2a = -2
a = -1
Hence, the oxidation number of Hydrogen atom in CaH₂ is -1
Answer:
6
Explanation:
To determine the number of neutrons we round 10.8 to 11 and subtract the atomic number (5) and get 6; therefore, boron has 6 neutrons.
Answer:
C i took the test as well and i reambee i lern this in class
Explanation:
Hope it helps and mark me brainlest answer