Given that the mass of the toy cart is 2.0 kg and and the acceleration is unknown, the normal formula would be a=f/m where a is acceleration, f is force and m is mass but the string's breaking strength is 40n so I think the formula in this case will be f is greater than m*a
40 is greater than 2a
40 is greater than 2a
40/2 is greater than 2a/2
20m/s² is greater than a
Therefore the maximum speed the toy cart should have should be less than 20m/s²
Explanation:
Speed is distance over time.
500 km / 2 hr = 250 km/hr
Velocity is speed and direction.
250 km/hr north
Answer:
Cools ; size
Explanation:
The rate at which magma cools determines the size of the crystals in the new rock. Igneous rocks are formed from the cooling and solidification of molten magma which finds its way to the surface or depth of very low pressure beneath the surface. This place or depth of cooling of magma affects the cooling rate and hence the size of the crystals formed. Igneous rocks formed at depths below the surface have more time to cool and allows more time for Crystal growth and hence produce coarse grained crystal grains called Intrusive igneous rocks which have significantly larger crystals than those formed on the surface which cools rapidly and allowing very little time for crystal growth giving rise to the formation of fine grained crystals and are called extrusive igneous rocks.
Answer:
v = 6i + 12j + 4k
Explanation:
Find the magnitude of the direction vector.
√(3² + 6² + 2²) = 7
Normalize the direction vector.
3/7 i + 6/7 j + 2/7 k
Multiply by the magnitude of v.
v = 14 (3/7 i + 6/7 j + 2/7 k)
v = 6i + 12j + 4k
Answer:
Velocity (v) is a vector quantity that measures displacement (or change in position, Δs) over the change in time (Δt), represented by the equation v = Δs/Δt. Speed (or rate, r) is a scalar quantity that measures the distance traveled (d) over the change in time (Δt), represented by the equation r = d/Δt.
Explanation: