Explanation:
Given that,
Mass = 0.254 kg
Spring constant [tex[\omega_{0}= 10.0\ N/m[/tex]
Force = 0.5 N
y = 0.628
We need to calculate the A and d
Using formula of A and d
.....(I)
....(II)
Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Hence, This is the required solution.
A hillside of course my friend
Answer:
The second object takes 2.28 s to fall the 25.5 m.
Explanation:
In this case, both objects take the same time to fall, since <em>no vertical velocity is added </em>to any of them.
You can also confirm this by sepparating the second's object movement into its two directions: in the horizontal one, we have <em>linear uniform motion, </em>and in the vertical one, we have <em>free fall, </em>with exactly the same characteristics as for the first object.
Answer: direction
Explanation:
Given
The resultant vector of a force gives us information regarding the direction of the resultant force.
If there are multiple forces acted in a different direction then, the resultant vector describes the direction of the resultant force.
Answer:
Explanation:
velocity of first projectile after 3 s
v = u - gt
v = 49.4 - 9.8 x 3
= 20 m /s
Velocity of second projectile after 3 s after being dropped from rest
v = u + gt
= 0 + 9.8 x 3
= 29.4 m /s
They will be moving in opposite direction at the time of meeting , so their relative velocity
= 20 + 29.4 = 49.4 m /s
From the frame of reference of the first projectile, the velocity of the second projectile will be 49.4 m /s .