Incomplete question as the mass of baseball is missing.I have assume 0.2kg mass of baseball.So complete question is:
A baseball has mass 0.2 kg.If the velocity of a pitched ball has a magnitude of 44.5 m/sm/s and the batted ball's velocity is 55.5 m/sm/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Answer:
ΔP=20 kg.m/s
Explanation:
Given data
Mass m=0.2 kg
Initial speed Vi=-44.5m/s
Final speed Vf=55.5 m/s
Required
Change in momentum ΔP
Solution
First we take the batted balls velocity as the final velocity and its direction is the positive direction and we take the pitched balls velocity as the initial velocity and so its direction will be negative direction.So we have:

Now we need to find the initial momentum
So

Substitute the given values

Now for final momentum

So the change in momentum is given as:
ΔP=P₂-P₁
![=[(11.1kg.m/s)-(-8.9kg.m/s)]\\=20kg.m/s](https://tex.z-dn.net/?f=%3D%5B%2811.1kg.m%2Fs%29-%28-8.9kg.m%2Fs%29%5D%5C%5C%3D20kg.m%2Fs)
ΔP=20 kg.m/s
After a thorough research, there exists the same question that has choices and the link of the graph (http://i37.servimg.com/u/f37/16/73/53/52/graph410.png)
<span>Choices:
A. 160 meters
B. 80 meters
C. 40 meters
D. 20 meters
E. 0 meters
</span>
The correct answer is letter E. 0 meters.
The answer is B. One plate slides past another.
The San Andreas Fault in California and the Alpine Fault in New Zealand are examples of transform boundaries.
Hope this helps! :)
Using the formula F = m*a. where F is the force, m is the mass and a is the acceleration you can use it for each. As long as there are no other forces towards the body in both cases :
F = m*a
F = 50*3
F = 150 N