Answer:
The mass of oxygen is 12.10 g.
Explanation:
The decomposition reaction of potassium chlorate is the following:
2KClO₃(s) → 2KCl(s) + 3O₂(g)
We need to find the number of moles of KClO₃:

Where:
m: is the mass = 30.86 g
M: is the molar mass = 122.55 g/mol
Now, we can find the number of moles of O₂ knowing that the ratio between KClO₃ and O₂ is 2:3
Finally, the mass of O₂ is:

Therefore, the mass of oxygen is 12.10 g.
I hope it helps you!
Answer: the such thing that we call gastric acid, is made/produced by the cells that srebwithi any lining of our stomac, they are coupled in places like feedback system that extend to the acid production when it is needed.
other cells that are within our stomach will bicarbonat, at the base to buffer the fluid making sure that it doesn’t become too acidic
so yes it is
Explanation: hope this helped plz mark brainest
One thing to notice in the question is, we are asked about molecular oxygen that has formula O2 not atomic oxygen O.
As we are asked about molecular oxygen, we will answer the question in terms of number of molecules that are present in 16 grams of molecular oxygen.
To get the number of molecules present in 16 grams of O2, we will use the formula:
No. of molecules = no. of moles x Avogadro's number (NA)----- eq 1)
As we know:
The number of moles = mass/ molar mass of molecule
Here we have been given mass already, 16 grams and the molar mass of O2 is 32 grams.
Putting the values in above formula:
= 16/32
= 0.5 moles
Putting the number of moles and Avogadro's number (6.02 * 10^23) in eq 1
No. of molecules = 0.5 x 6.02 * 10^23
=3.01 x 10^23 molecules
or 301,000,000,000,000,000,000,000 molecules
This means that 16 grams of 3.01 x 10^23 molecules of oxygen.
Hope it helps!
Answer:
44.9g
Explanation:
You have to convert grams of CH4 to moles, use the mole-to-mole ratio of CH4 to water, and convert back to grams.
(20.0g CH4)(1 mol CH4/16.04g)(2 mol H2O/1 mol CH4)(18.01 g H2O/ 1 mol) = 44.9127 g
Hope this helps!