Answer:
760 mm of Hg
Explanation:
If the gases A , B and C are non reacting , then according to <u>Dalton's </u><u>Law </u><u>of</u><u> </u><u>Partial </u><u>Pressure</u> the total pressure exerted is equal to sum of individual partial pressure of the gases .
If there are n , number of gases then ,
Here ,
- Partial pressure of Gas A = 400mm of Hg
- Partial pressure of Gas B = 220 mm of Hg
- Partial pressure of Gas C = 140mm of Hg
Hence the total pressure exerted is ,
Substitute ,

Add ,

<u>Hence</u><u> the</u><u> </u><u>total</u><u> pressure</u><u> exerted</u><u> by</u><u> the</u><u> </u><u>gases </u><u>is </u><u>7</u><u>6</u><u>0</u><u> </u><u>mm </u><u>of </u><u>Hg</u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em>.</em>
Answer:
a. Boron trifluoride
b. Propane
c. Dinitrogen pentoxide
d. Carbon Dioxide
e. Silicon Octafluroride?
Explanation:
Glad to help :)
Answer:
Option B. 2Mg(s) + O2 (g) —> 2MgO (s)
Explanation:
From the question given above,
We were told that:
2 solid Mg atoms bond with O2 gas to produce solid MgO.
This can be represented by an equation as follow:
2Mg(s) + O2 (g) —> MgO (s)
Next, we shall balance the above equation as follow:
2Mg(s) + O2 (g) —> MgO (s)
There are 2 atoms of Mg on the left side and 1 atom on the right side. It can be balance by putting 2 in front of MgO as shown below:
2Mg(s) + O2 (g) —> 2MgO (s)
Now, the equation is balanced.
I can’t see the question :/