Answer:
Explanation:
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Chemical equation:
Mg + HCl → H₂ + MgCl₂
24 g + 36.5 g = 2 g+ 95 g
60.5 g = 97 g
The reaction does not hold the law of conservation of mass, because it is not balanced.
Balanced chemical equation:
Mg + 2HCl → H₂ + MgCl₂
24 g + 73 g = 2 g+ 95 g
97 g = 97 g
this equation completely follow the law of conservation of mass.
It has to be understood that 2 moles of oxygen are there in each mole of PbO2. Then it has to be calculated for 2 moles of oxygen.
Amount of oxygen = 2 * 5.43 moles
= 10.86 moles
Now it is also a fact that each mole of H2O contains 1 mole of oxygen. Then it can be easily concluded that 10.86 moles of water will be produced. I hope the procedure is clear enough for you to understand.
Answer:
63.25 grams of CO₂
Explanation:
To convert from liters to grams, we first need to convert from liters to moles. To do this, we divide the liters by 22.4, the amount of liters of a gas per mole.
32.2 / 22.4
= 1.4375 moles of CO₂
Now we want to convert from moles to grams. To do this, we multiply the moles by the molar mass of CO₂. The total molar mass can be found on the periodic table by adding up the molar mass of carbon (12) and two oxygen (32).
12 + 32 = 44
Now we want to multiply the moles by the molar mass.
1.4375 • 44
= 63.25 grams of CO₂
This is your answer.
Hope this helps!
Answer:
<h2>14.05 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>14.05 moles</h3>
Hope this helps you