Better technology is helping us because we can see more stuff like the microscope we able to make assumptions based on what we saw.
To solve this problem it is necessary to apply the concepts related to the principle of superposition and the equations of destructive and constructive interference.
Constructive interference can be defined as

Where
m= Any integer which represent the number of repetition of spectrum
= Wavelength
d = Distance between the slits.
= Angle between the difraccion paterns and the source of light
Re-arrange to find the distance between the slits we have,



Therefore the number of lines per millimeter would be given as



Therefore the number of the lines from the grating to the center of the diffraction pattern are 380lines per mm
MEMORIZED E=h*v h=6.626x10-34J*s INFORMED v=7.21x1014S-1CALCULATE E=h*v E=(6.626x10-34J*s)*(7.21x1014s-1) The "s" cancels out. s-1=1/s so you get s/s so you are left with Solution 4.78 10-19 J OR .478 aJ <span>Apex - 467 nm ^.^ hopefully thats the correct thing</span>
Your answer is C) The speed of sound is higher in solids than in liquids.