Explanation:
It is given that,
Mass of a bungee jumper is 65 kg
The time period of the oscillation is 38 s, hitting a low point eight more times.It means its time period is

After many oscillations, he finally comes to rest 25.0 m below the level of the bridge.
For an oscillating object, the time period is given by :

k = spring stiffness constant
So,

When the cord is in air,
mg=kx
x = the extension in the cord

So, the unstretched length of the bungee cord is equal to 25 m - 5.6 m = 19.4 m
I think the correct answer would be that the temperature of the clouds that made the very first stars where thought to be higher since the clouds are made up of hydrogen and helium. Hope this answers the question. Have a nice day.
Answer:
The neutral state of an atom is when it's net charge is zero; that is, the number of protons equals the numbers of electrons. Oxygen is the eighth element in the periodic table, with the symbol O. This means that it has eight electrons in its neutral state. Since it is neutral, it also has eight protons!
The X and Y components are as follows;
1. X = 35 * cos 57 = 19. 1m/s; Y = 35 * sin 57 = 29.4 m/s
2. X = 12 * -cos 34 = -10 m/s; Y = 12 * -sin 34 = -6.7 m/s
3. X = 8 * -cos 90 = 0 m/s; Y = 12 -sin 90 = -8 m/s
4. X = 20 * cos 75 = 5. 2m/s; Y = 20 * (-sin 75) = -19.3 m/s
<h3>What are the horizontal and vertical components of the vectors?</h3>
The horizontal and vertical components of the velocities are given as follows:
- Horizontal component, X = x cos θ
- Vertical component, Y = y sin θ
1. 35 m/s at 57° from x-axis
X = 35 * cos 57 = 19. 1m/s
Y = 35 * sin 57 = 29.4 m/s
2. 12m/s at 34° S of W
X = 12 * -cos 34 = -10 m/s
Y = 12 * -sin 34 = -6.7 m/s
3. 8 m/s at South
X = 8 * -cos 90 = 0 m/s
Y = 12 -sin 90 = -8 m/s
4. 20 m/s at 275° from x-axis
X = 20 * cos 75 = 5. 2m/s
Y = 20 * (-sin 75) = -19.3 m/s
In conclusion, the X and Y components are found by taking cosines and sine of the angles.
Learn more about horizontal and vertical components at: brainly.com/question/26446720
#SPJ1
Answer:
Q=mc(T2-T1)
Explanation:
Ti is the temperature
m is mass
c is specific heat capacity for steam
Q is heat, [Q]=J