Answer:
electrostatic attraction
Explanation:
Atoms form chemical bonds with other atoms when there's an electrostatic attraction between them. This attraction results from the properties and characteristics of the atoms' outermost electrons, which are known as valence electrons.
Answer:
E = 307667 N/C
Explanation:
Since the object's mass is 1 g, then its weight in newtons is 0.001 * 9.8 = 0.0098 N.
This weight should have the same magnitude of the vertical component of the tension T of the string (T * cos(37)) so we can find the magnitude of the tension T via:
0.0098 N = T * cos(37)
then T = 0.0098/cos(37) N = 0.01227 N
Knowing the tension's magnitude, we can find its horizontal component:
T * sin(37) = 0.007384 N
and now we can obtain the value of the electric field since we know the charge of the ball to be: -2.4 * 10^(-8) C:
0.007384 N = E * 2.4 * 10^(-8) C
Then E = 0.007384/2.4 * 10^(-8) N/C
E = 307667 N/C
Answer:



Explanation:
= Torque = 36.5 Nm
= Initial angular velocity = 0
= Final angular velocity = 10.3 rad/s
t = Time = 6.1 s
I = Moment of inertia
From the kinematic equations of linear motion we have

Torque is given by

The wheel's moment of inertia is 
t = 60.6 s
= 10.3 rad/s
= 0

Frictional torque is given by

The magnitude of the torque caused by friction is 
Speeding up

Slowing down

Total number of revolutions


The total number of revolutions the wheel goes through is
.
Answer:
A) 8.03Hz
Explanation:
f = V/λ
Where wavelength( λ )= 30m
Speed (V) =241m/S
f= 241/30=8.03Hz
Answer:
They will move the fridge if they all push in the same direction, but it will not move with constant velocity
Explanation:
The maximum static friction force is
(negative sign since its direction is opposite to the push applied by the people)
Sam can apply a force of 130 N, while Amir and Andre can apply a push of 65 N each, so the total force that they can apply, if they push in the same direction, will be:

This force is larger than the frictional force, so the fridge will start moving.
However, the net force on the fridge will be:

And according to Newton's second law,

where m is the mass of the fridge and a its acceleration, since the net force is not zero, then the fridge will have a non-zero acceleration, so it will not move with constant velocity.