Answer:
D. Synthetic polymers are inexpensive to produce.
Explanation:
Hailey should include that synthetic polymers are inexpensive to produce as a benefit of synthetic polymers.
Synthetic polymers are artificially produced. These polymers come about from petroleum oil. Their hydrocarbons are industrially worked to produce the long chain hydrocarbons to form polymers.
Most of these polymers are very cheap to produce and does not cost too much. This is why they almost found everywhere.
Explanation:
Answer:
Maximum speed ( v ) = 10.4 m/s (Approx)
Explanation:
Given:
Amplitude A = 15.0 cm = 0.15 m
Frequency f = 11.0 cycles/s (Hz)
Find:
Maximum speed ( v )
Computation:
Angular frequency = 2πf
Angular frequency = 2π(11)
Angular frequency = 69.14
Maximum speed ( v ) = WA
Maximum speed ( v ) = 69.14 x 0.15
Maximum speed ( v ) = 10.371
Maximum speed ( v ) = 10.4 m/s (Approx)
Answer:
Thin, aluminium and buried underground.
Explanation:
When it comes to electrification of a state or province, some characteristics of the wire to use must be considered. This would help to minimize and avoid power loss and wire burns.
i. The wire to use should be thin, and a quite number can be twisted one against the other so as to increase the surface area for heat dissipation.
ii. Aluminium wire is more preferable for this project. It has a high melting point, and reduces energy loss.
iii. Burying the wire underground through an insulator is the best choice, though expensive but would preserve the wire from external influence.
Answer
speed of the molecules
s₁ = v t
when velocity is doubled
s₂ = (2 v)t
= 2 s₁
they will hit the wall of container two times as often.
the momentum of molecule
p₁ = mvr
p₂ = m(2v)r = 2(mvr)
= 2 p₁
the momentum change is two times as great.
force is change in momentum
Δp = F(Δt)
mv-(-mv) = 2 mv

F α v
therefore average force impart to the wall on each collision is two times


p α v²
here the velocity is doubled it means pressure becomes four times.
Answer:
v = 11 m/s is her final speed
Explanation:
work done by gravity = m g Δh = 40×9.8×10 = 3920 Joules
Work done by friction = - force×distance = - 20×100 = - 2000 Joules
[minus sign because friction force is opposite to the direction of motion]
Initial K.E. = (1/2) m u^2 = (1/2) × 40 × 5^2 = 500 Joules
Now, by work energy theorem
Work done = change in kinetic energy.
Final K.E. = initial K.E. + total work = 500 + 3920 - 2000 = 2420 Joules
Now, Final K.E. = (1/2) m v^2 [final speed being v= speed at the bottom]
⇒ 2420 = (1/2)×40×v^2
⇒ 121 = v^ 2
v = 11 m/s is her final speed