Answer:
It is mentioned that the student is mixing chemicals A and B and observes the time taken for the color to change. However, in the experiment, it is noticed that the student has repeated the procedure five times and each time he or she is modifying the concentration of chemical B. Thus, it is clear that the concentration of chemical B is the independent variable in the experiment. An independent variable is illustrated as the variable, which is controlled or modified in the experiment.
<span>The liquid form of matter is usually more dense than its gas form. This is because liquid molecules are closer together compared to gas molecules. An exception, however, is water. Water's solid form or ice is less dense than its liquid form because of the orientation of hydrogen bonds that lowers its density.</span>
The opposite type of reaction (where energy is taken in from the surroundings of a reaction and thus the energy of the reactants is lower than that of the products) is called an endothermic reaction
Answer:
n₂ =1.4 mol
Explanation:
Given data:
Mass of nitrogen = 2 g
Initial Volume occupy by nitrogen = 1.25 L
Final volume occupy by nitrogen = 25.0 L
Final number of moles = ?
Solution;
Formula:
V₁ / n₁ = V₂ / n₂
Number of moles of nitrogen:
Number of moles = mass/ molar mass
Number of moles = 2 g/ 28 g/mol
Number of moles = 0.07 mol
Now we will put the values in formula:
V₁ / n₁ = V₂ / n₂
n₂ = V₂× n₁ /V₁
n₂ = 25 L × 0.07 mol / 1.25 L
n₂ = 1.75 L. mol / 1.25 L
n₂ =1.4 mol
Answer:
Decomposition or cracking
Explanation:
Decomposition reaction is a chemical change in which a single compound is broken down into two or more simpler products.
For example;
A → B + C
The driving force of such reaction is the high positive heat of formation of the compound which indicates that they are highly unstable.
Some stable compounds also decompose when subjected to high temperature and pressure.