Answer:
0.015 moles
Explanation:
- One mole of a compound contains molecules equivalent to the Avogadro's constant, 6.022 × 10^23.
- That is, 1 mole of a compound will have 6.022 × 10^23 molecules.
In our case, We are given 8.96 x 10^21 molecules of KBr
We need to find the number of moles in 8.96 x 10^21 molecules
1 mole of KBr = 6.022 × 10^23 molecules.
8.96 x 10^21 molecules = ?
Therefore;
(1 × 8.96 x 10^21 molecules ) ÷ 6.022 × 10^23 molecules.
= 1.488 × 10^-2 moles
= 0.01488 moles
= 0.015 moles
Answer: Why exacly am i a rat
Explanation:
,....
but thanks
Answer: hydrolysis oxidation acidification
Explanation:
they break down, dissolve, or create new elements
Answer:
The amount of drug left in his body at 7:00 pm is 315.7 mg.
Explanation:
First, we need to find the amount of drug in the body at 90 min by using the exponential decay equation:

Where:
λ: is the decay constant = 
: is the half-life of the drug = 3.5 h
N(t): is the quantity of the drug at time t
N₀: is the initial quantity
After 90 min and before he takes the other 200 mg pill, we have:

Now, at 7:00 pm we have:

Therefore, the amount of drug left in his body at 7:00 pm is 315.7 mg (from an initial amount of 400 mg).
I hope it helps you!
Answer:
protons
These particles do not vary in quality from one element to another; rather, what gives an element its distinctive identification is the quantity of its protons, called its atomic number. Protons and neutrons contribute nearly all of an atom's mass; the number of protons and neutrons is an element's mass number
Explanation: