The conversion factor is added to the original given unit so that you can end up with the final unit. Basically, the conversion unit does not change the value because the factor is just equal to 1. You just manipulate the units by cancelling them.
Among the given choices, the fraction which is equal to 1 is 10⁻³ g/ 1 mg, because there are 1,000 mg per 1 g. In reverse, that would be 10⁻³ of a gram.
Answer:
Tea also contains two substances related to caffeine: theobromine and theophylline
Answer:
Empirical formula: BH3
Molecular Formula: B2H6
Explanation:
To solve the exercise, we need to know how many boron atoms and how many hydrogen atoms the compound has. We know that of the total weight of the compound, 78.14% correspond to boron and 21.86% to hydrogen. As the weight of the compound is between 27 g and 28 g, using the above percentages we can solve that the compound has between 21.1 g and 21.8 g of boron, and between 5.9 g and 6.1 g of hydrogen:
100% _____ 27 g
78.14% _____ x = 78.14% * 27g / 100% = 21.1 g boron
100% ______27 g
21.86% ______ x = 21.86% * 27g / 100% = 5.9 g hydrogen
100% _____ 28 g
78.14% _____ x = 78.14% * 28g / 100% = 21.8 g boron
100% _____ 28g
21.86% _____ x = 21.86% * 28g / 100% = 6.1 g hydrogen
So, if the atomic weight of boron is 10.8 g, there must be two boron atoms in the compound that sum 21.6 g. The weight of hydrogen is 1 g, so the compound must have six hydrogen atoms.
The molecular formula represents the real amount of atoms that form a compound. Therefore, the molecular formula of the compound is B2H6.
The empirical formula is the minimum expression that represents the proportion of atoms in a compound. For example, ethane has 2 carbon atoms and 6 hydrogen atoms, so its molecular formula is C2H6, however, its empirical formula is CH3. Therefore, the empirical formula of the boron compound is BH3.
You would want to know everything just Incase anything happens because maybe you get lost
hi im breanna
Answer:
The mole is simply a very large number that is used by chemists as a unit of measurement.
Explanation:
The mole is simply a very large number,
6.022
×
10
23
, that has a special property. If I have
6.022
×
10
23
hydrogen atoms, I have a mass of 1 gram of hydrogen atoms . If I have
6.022
×
10
23
H
2
molecules, I have a mass of 2 gram of hydrogen molecules. If I have
6.022
×
10
23
C
atoms, I have (approximately!) 12 grams.
The mole is thus the link between the micro world of atoms and molecules, and the macro world of grams and litres, the which we can easily measure by mass or volume. The masses for a mole of each element are given on the periodic table as the atomic weight. So, if have 12 g of
C
, I know, fairly precisely, how many atoms of carbon I have. Given this quantity, I know how many molecules of
O
2
are required to react with the
C
, which I could measure by mass or by volume.