Decreasing the concentration would decrease the reaction rate (option c)
The aforementioned statement is due to the fact that when a substance's concentration is high, it will quickly perform the chemical reaction as there are more particles reacting with one another. Conversely, if there is less of a concentration, then the reaction rate would decrease as there are little particles reacting with one another.
Answer:
Volume required = 0.327 L
Explanation:
Given data:
Volume in L = ?
Molarity of solution = 1.772 M
Mass of BaCl₂ = 123 g
Solution:
First of all we will calculate the number of moles of BaCl₂,
Number of moles = mass/molar mass
Number of moles = 123 g/ 208.23 g/mol
Number of moles = 0.58 mol
Now, given problem will solve by using molarity formula.
Molarity = number of moles / volume in L
1.772 M = 0.58 mol / Volume in L
Volume in L = 0.58 mol / 1.772 M
Volume in L = 0.327 L
Question: The question is not complete. Find below the complete question and the answer.
Alab group was supposed to make 14 mL of a 36% acid solution by mixing a 20% solution, a 26% solution, and a 42% solution. However, the 20% solution was mislabeled, and was actually a 10% solution, so the lab group ended up with 14 mL of a 34% acid solution, instead. If the augmented matrix that represents the system of equations is given below, what are the volumes of the solutions that should have been mixed? mL
Volume of 20% solution= ?
Volume of 26% solution = ?
Volume of 42% solution= ? Round to the nearest whole number ml
Answer:
Volume of 20% solution= 3 mL
Volume of 26% solution = 1 mL
Volume of 42% solution= 10 mL
Explanation:
Find attached of the calculations.
I’ve only had one and it didn’t flow so ion think so
Answer:
21883.75 Joules are required to melt the ice!