The answer would be intoduction hope this really helped
Answer:
21.21 m/s
Explanation:
Let KE₁ represent the initial kinetic energy.
Let v₁ represent the initial velocity.
Let KE₂ represent the final kinetic energy.
Let v₂ represent the final velocity.
Next, the data obtained from the question:
Initial velocity (v₁) = 15 m/s
Initial kinetic Energy (KE₁) = E
Final final energy (KE₂) = double the initial kinetic energy = 2E
Final velocity (v₂) =?
Thus, the velocity (v₂) with which the car we travel in order to double it's kinetic energy can be obtained as follow:
KE = ½mv²
NOTE: Mass (m) = constant (since we are considering the same car)
KE₁/v₁² = KE₂/v₂²
E /15² = 2E/v₂²
E/225 = 2E/v₂²
Cross multiply
E × v₂² = 225 × 2E
E × v₂² = 450E
Divide both side by E
v₂² = 450E /E
v₂² = 450
Take the square root of both side.
v₂ = √450
v₂ = 21.21 m/s
Therefore, the car will travel at 21.21 m/s in order to double it's kinetic energy.
The rms current in the transmission lines is I = 487.18 A.
The root-imply-rectangular (rms) voltage of a sinusoidal supply of electromotive force is used to represent the source. it is the rectangular root of the time average of the voltage squared.
Alternating-present day circuits. the root-imply-square (rms) voltage of a sinusoidal source of electromotive force is used to symbolize the supply. it's far the square root of the time average of the voltage squared.
Electric power is by using present day or the waft of electric fee and voltage or the capacity of rate to deliver electricity. A given cost of power can be produced by using any combination of contemporary and voltage values
power = 38 M watt
rms voltage = 78 K v
power = IV
I = power/V
I = (38 * 1000000)/78*1000
I = 487.18 A.
Learn more about rms current here:-brainly.com/question/20913680
#SPJ4