Radio Station W as the slower the frequency the longer the wave length
So momentum is just velocity times mass, this means Momentum = Velocity x Mass.
We can rearrange this to be Velocity = Momentum/Mass.
Since we know momentum and mass we can now solve.
Velocity = 264/(45+2.5)
= 5.56 m/s
Answer:
16.8ohms
Explanation:
According to ohm's law which states that the current passing through a metallic conductor at constant temperature is directly proportional to the potential difference across its ends.
Mathematically, V = IRt where;
V is the voltage across the circuit
I is the current
R is the effective resistance
For a series connected circuit, same current but different voltage flows through the resistors.
If the initial current in a circuit is 19.3A,
V = 19.3R... (1)
When additional resistance of 7.4-Ω is added and current drops to 13.4A, our voltage in the circuit becomes;
V = 13.4(7.4+R)... (2)
Note that the initial resistance is added to the additional resistance because they are connected in series.
Equating the two value of the voltages i.e equation 1 and 2 to get the resistance in the original circuit we will have;
19.3R = 13.4(7.4+R)
19.3R = 99.16+13.4R
19.3R-13.4R = 99.16
5.9R = 99.16
R= 99.16/5.9
R = 16.8ohms
The resistance in the original circuit will be 16.8ohms
Answer:
distance cover is = 102.53 m
Explanation:
Given data:
speed of object is 17.1 m/s


from equation of motion we know that

where d_1 is distance covered in time t1
so
=


where d_2 is distance covered in time t2


distance cover is = 213.31 - 110.78 = 102.53 m
D) The speed of a wave slows as it travels at different speed in different media.