Answer:
<u>For M84:</u>
M = 590.7 * 10³⁶ kg
<u>For M87:</u>
M = 2307.46 * 10³⁶ kg
Explanation:
1 parsec, pc = 3.08 * 10¹⁶ m
The equation of the orbit speed can be used to calculate the doppler velocity:

making m the subject of the formula in the equation above to calculate the mass of the black hole:
.............(1)
<u>For M84:</u>
r = 8 pc = 8 * 3.08 * 10¹⁶
r = 24.64 * 10¹⁶ m
v = 400 km/s = 4 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 590.7 * 10³⁶ kg
<u>For M87:</u>
r = 20 pc = 20 * 3.08 * 10¹⁶
r = 61.6* 10¹⁶ m
v = 500 km/s = 5 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 2307.46 * 10³⁶ kg
The mass of the black hole in the galaxies is measured using the doppler shift.
The assumption made is that the intrinsic velocity dispersion is needed to match the line widths that are observed.
Answer:
-5 m/s
Explanation:
The linear velocity of B is equal and opposite the linear velocity of E.
vB = -vE
vB = -ωE rE
10 m/s = -ωE (12 m)
ωE = -0.833 rad/s
The angular velocity of E is the same as the angular velocity of D.
ωE = ωD
ωD = -0.833 rad/s
The linear velocity of Q is the same as the linear velocity of D.
vQ = vD
vQ = ωD rD
vQ = (-0.833 rad/s) (6 m)
vQ = -5 m/s
Answer:
Since in summer, the eastern side do not face the sunlight and hence the water in eastern pot remain cool in summer.