Answer:
The peak value of the electric field is 489.64 V/m
Explanation:
Given;
power of the laser, P = 1.0 mW = 1 x 10⁻³ W
Radius of the beam, R = 1.0 mm = 1 x 10⁻³ m
Area of the beam = πr² = π(1 x 10⁻³ )² = 3.142 x 10⁻⁶ m²
The average intensity of the light = P / A
The average intensity of the light = ( 1 x 10⁻³) / (3.142 x 10⁻⁶)
The average intensity of the light = 318.27 W/m²
The peak value of the electric field is given by;

Therefore, the peak value of the electric field is 489.64 V/m.
Look at the third one i think its the answer
First off, you need to know the weight of the projectile, lift and drag coefficients something like a high Reynolds number is preferred, then use the gravitational constant of 9.8 meters per second squared those would be a good start to get closer to your goal
Answer:
a) The Energy added should be 484.438 MJ
b) The Kinetic Energy change is -484.438 MJ
c) The Potential Energy change is 968.907 MJ
Explanation:
Let 'm' be the mass of the satellite , 'M'(6×
be the mass of earth , 'R'(6400 Km) be the radius of the earth , 'h' be the altitude of the satellite and 'G' (6.67×
N/m) be the universal constant of gravitation.
We know that the orbital velocity(v) for a satellite -
v=
[(R+h) is the distance of the satellite from the center of the earth ]
Total Energy(E) = Kinetic Energy(KE) + Potential Energy(PE)
For initial conditions ,
h =
= 98 km = 98000 m
∴Initial Energy (
) =
m
+
Substituting v=
in the above equation and simplifying we get,
= 
Similarly for final condition,
h=
= 198km = 198000 m
∴Final Energy(
) = 
a) The energy that should be added should be the difference in the energy of initial and final states -
∴ ΔE =
- 
=
(
-
)
Substituting ,
M = 6 ×
kg
m = 1036 kg
G = 6.67 × 
R = 6400000 m
= 98000 m
= 198000 m
We get ,
ΔE = 484.438 MJ
b) Change in Kinetic Energy (ΔKE) =
m[
-
]
=
[
-
]
= -ΔE
= - 484.438 MJ
c) Change in Potential Energy (ΔPE) = GMm[
-
]
= 2ΔE
= 968.907 MJ
Answer:
Every 2.2 kg is 1 pound. So mulitply 19 * 2.2. It's gonna be equal to 41.8
Explanation: