It seems more and more there are fewer conservation organizations who speak for the forest, and more that speak for the timber industry. Witness several recent commentaries in Oregon papers that are by no means unique. I’ve seen similar themes from other conservation groups across the West in recent years.
Many conservation groups have uncritically adopted views that support more logging of our public lands based upon increasingly disputed ideas about forest health and fire ecology, as well as the age-old bias against natural processes like wildfire and beetles.
For instance, an article in the Portland Oregonian quotes Oregon Wild’s executive director Sean Stevens bemoaning the closure of a timber mill in John Day Oregon. Stevens said: “Loss of the 29-year-old Malheur Lumber Co. mill would be ‘a sad turn of events’” Surprisingly, Oregon Wild is readily supporting federal subsidies to promote more logging on the Malheur National Forest to sustain the mill.
<span>solution of KI becomes saturated at 10 degrees when around 135-138g KI are added to 100 g of water, so it should be still unsaturated, A. unsaturated (although it is very close to saturation)</span>
Answer:
- <u>Alkaline or basic solution </u>(alkaline and basic means the same)
Explanation:
According to the <em>pH</em>, solutions may be classified as neutral, acidic, or alkaline (basic).
This table shows such classification:
pH classification
7 neutral
> 7 alkaline or basic
< 7 acidic
Thus, since the pH of the solution is 8.3, which is greater than 7, the solution is classified as basic (alkaline).
Additionally, you must learn that pH is a logarithmic scale for the concentration of hydronium ions in the solution.
You can calculate the concentration of hydronium ions using antilogarithm properties:
![pH=-log[H_3O^+]\\ \\ {[H_3O^+]}=10^{-pH}\\ \\ {[H_3O^+]}=10^{-8.3}=0.00000000501](https://tex.z-dn.net/?f=pH%3D-log%5BH_3O%5E%2B%5D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D10%5E%7B-pH%7D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D10%5E%7B-8.3%7D%3D0.00000000501)
NaOH solutions are alkaline solutions, bases, according to Arrhenius model, because they contain OH⁻ ions and release them when ionize in water.