It can only do that when one of the components of the mixture is a magnetic
material.
When you have that situation, you pass the magnet over the mixture ... shaking
the mixture if it's a dry mixture of powders or pieces ... and the magnetic part of
the mixture moves toward the magnet, while the nonmagnetic parts of the mixture
couldn't care less about the magnet and they just stay where they are.
Explanation:
<u>Periodic table is the tabular display of elements that are arranged by the increasing atomic number.
</u>
Structure of the periodic table shows various periodic trends.
<u>Significance:
</u>
The periodic table is very important because it gives an organized way to provide lots of information about the elements and how they can be related to one another. The table gives a systematic approach to study the elements and their properties. The table can also be used to predict the properties of the elements which have not been discovered yet.
Answer:
frequency = velocity of light /wavelength
wavelength = velocity / frequency
=3 x10^8 / 5.9 x 10^11
=0.508 x 10^-3.
Answer:
k is 3,18*10⁻² s⁻¹ at 75°C
Explanation:
following Arrhenius equation:
k= k₀*e^(-Ea/RT)
where k= rate constant , k₀= frequency factor , Ea= activation energy , R= universal gas constant T=absolute temperature
then for T₁=25°C =298 K
k₁= k₀*e^(-Ea/RT₁)
and for T₁=75°C = 348 K
k₂= k₀*e^(-Ea/RT₂)
dividing both equations
k₂/k₁= e^(-Ea/RT₂+Ea/RT₁ )
k₂= k₁*e^[-Ea/R*(1/T₂-1/T₁ )]
replacing values
k₂= k₁*e^[-Ea/R*(1/T₂-1/T₁ )] = 4,7*10⁻³ s⁻¹ *e^[-33.6*1000 J/mol /8.314 J/molK*(1/ 348 K -1/298 K )] = 3,18*10⁻² s⁻¹
thus k is 3,18*10⁻² s⁻¹ at 75°C