The relationship between math and science is very complicated, yet at the same time very simple. In fact all scientific equations are expressed into some form of mathematical equations. Science is a body of knowledge about the Universe. Mathematics is a language that can describe relationships and change in relationships in a rational way. Science generally uses mathematics as a tool to describe science and vice versa.
Answer:
It is easier to stop the bicycle moving at a lower velocity because it will require a <em>smaller force</em> to stop it when compared to a bicycle with a higher velocity that needs a<em> bigger force.</em>
Explanation:
The question above is related to "Newton's Law of Motion." According to the <em>Third Law of Motion</em>, whenever an object exerts a force on another object <em>(action force)</em>, an equal force is exerted against it. This force is of the same magnitude but opposite direction.
When it comes to moving bicycles, the force that stops their movement is called "friction." Applying the law of motion, the higher the speed, the higher the force<em> </em>that is needed to stop it while the lower the speed, the lower the force<em> </em>that is needed to stop it.
The answer to your question is dioxygen carbide
Explanation:
Show that the motion of a mass attached to the end of a spring is SHM
Consider a mass "m" attached to the end of an elastic spring. The other end of the spring is fixed
at the a firm support as shown in figure "a". The whole system is placed on a smooth horizontal surface.
If we displace the mass 'm' from its mean position 'O' to point "a" by applying an external force, it is displaced by '+x' to its right, there will be elastic restring force on the mass equal to F in the left side which is applied by the spring.
According to "Hook's Law
F = - Kx ---- (1)
Negative sign indicates that the elastic restoring force is opposite to the displacement.
Where K= Spring Constant
If we release mass 'm' at point 'a', it moves forward to ' O'. At point ' O' it will not stop but moves forward towards point "b" due to inertia and covers the same displacement -x. At point 'b' once again elastic restoring force 'F' acts upon it but now in the right side. In this way it continues its motion
from a to b and then b to a.
According to Newton's 2nd law of motion, force 'F' produces acceleration 'a' in the body which is given by
F = ma ---- (2)
Comparing equation (1) & (2)
ma = -kx
Here k/m is constant term, therefore ,
a = - (Constant)x
or
a a -x
This relation indicates that the acceleration of body attached to the end elastic spring is directly proportional to its displacement. Therefore its motion is Simple Harmonic Motion.
Answer:
it would make sense because a larger body could produce more body heat.