The gravitational acceleration of a planet is proportional to the planet's mass, and inversely proportional to square of the planet's radius.
So when you stand on the surface of this particular planet, you feel a force of gravity that is
(1/2) / (3²)
of the force that you feel on the surface of the Earth.
That's <em>(1/18)</em> as much as on Earth.
The acceleration of gravity there would be about <em>0.545 m/s²</em>.
This is about 12% less than the gravity on Pluto.
Answer: The force does not change.
Explanation:
The force between two charges q₁ and q₂ is:
F = k*(q₁*q₂)/r^2
where:
k is a constant.
r is the distance between the charges.
Now, if we increase the charge of each particle two times, then the new charges will be: 2*q₁ and 2*q₂.
If we also increase the distance between the charges two times, the new distance will be 2*r
Then the new force between them is:
F = k*(2*q₁*2*q₂)/(2*r)^2 = k*(4*q₁*q₂)/(4*r^2) = (4/4)*k*(q₁*q₂)/r^2 = k*(q₁*q₂)/r^2
This is exactly the same as we had at the beginning, then we can conclude that if we increase each of the charges two times and the distance between the charges two times, the force between the charges does not change.
Answer:
7.99 or 8 depends where you round.
Explanation:
Distance divided by time so 1246/156=7.98717948718
Answer: 8*10^-15 N
Explanation: In order to calculate the force applied on an electron in the middle of the two planes at 500 V we know that, F=q*E
The electric field between the plates is given by:
E = ΔV/d = 500 V/0.01 m=5*10^3 N/C
the force applied to the electron is: F=e*E=8*10^-15 N
Answer:
"Magnitude of a vector can be zero only if all components of a vector are zero."
Explanation:
"The magnitude of a vector can be smaller than length of one of its components."
Wrong, the magnitude of a vector is at least equal to the length of a component. This is because of the Pythagoras theorem. It can never be smaller.
"Magnitude of a vector is positive if it is directed in +x and negative if is is directed in -X direction."
False. Magnitude of a vector is always positive.
"Magnitude of a vector can be zero if only one of components is zero."
Wrong. For the magnitude of a vector to be zero, all components must be zero.
"If vector A has bigger component along x direction than vector B, it immediately means, the vector A has bigger magnitude than vector B."
Wrong. The magnitude of a vector depends on all components, not only the X component.
"Magnitude of a vector can be zero only if all components of a vector are zero."
True.