Answer:
E = 1,873 10³ N / C
Explanation:
For this exercise we can use Gauss's law
Ф = E. dA =
/ ε₀
Where q_{int} is the charge inside an artificial surface that surrounds the charged body, in this case with the body it has a spherical shape, the Gaussian surface is a wait with radius r = 1.35 m that is greater than the radius of the sphere.
The field lines of the sphere are parallel to the radii of the Gaussian surface so the scald product is reduced to the algebraic product.
The surface of a sphere is
A = 4π r²
E 4π r² = q_{int} /ε₀
The net charge within the Gauussian surface is the charge in the sphere of q1 = + 530 10⁻⁹ C and the point charge in the center q2 = -200 10⁻⁹ C, since all the charge can be considered in the center the net charge is
q_{int} = q₁ + q₂
q_{int} = (530 - 200) 10⁻⁹
q_{int} = 330 10⁻⁹ C
The electric field is
E = 1 / 4πε₀ q_{int} / r²
k = 1 / 4πε₀
E = k q_{int}/ r²
Let's calculate
E = 8.99 10⁹ 330 10⁻⁹/ 1.32²
E = 1,873 10³ N / C
G/mL is equivalent to g/cm^3, so we first convert the dimensions into cm:
2.20 cm, 1.35 cm, and 1.25 cm
Then the total volume is: V = lwh = 3.7125 cm^3
To get the density, we divide mass by volume: 2.50 g / 3.7125 cm^3 = 0.6734 g/cm^3 = 0.6734 g/mL
Answer:
The focal length of eye piece is 6.52 cm.
Explanation:
Given that,
Angular Magnification of the microscope M = -46
the distance between the lens in microscope L= 16 cm
The focal length of objective f₀ = 1.5 cm
Normal near point N = 25 cm
Have to find focal length of eye piece f ₙ =?
The angular magnification is given by
M ≈ - (L-fₙ)N/f₀fₙ
Rearranging for fₙ
fₙ =L(1 - Mf₀/N)⁺¹
=18/2.76
fₙ = 6.52 cm
The focal length of eye piece is 6.52 cm.
It’s True the volume is 1k of iron is = 1
Pitch is the sensation of certain frequencies to the ear. High frequency = high pitch, low frequency = low pitch.
f = c(speed of the wave) / <span>λ (wavelength)
1. 343m/s / 0.77955m = 439.99 Hz
This corresponds to pitch A
2. 343m/s / 0.52028m = 659.26 Hz
</span> This corresponds to pitch E
<span>
3. 343m/s / 0.65552m = 523.349 Hz
</span>This corresponds to pitch C
4. using f = c / λ
λ = c / f<span>
= 343m/s / 587.33 = 0.583999 m = 0.584 m
</span>