Much of biological studies are actually chemistry because of chemical changes that occur within organisms. Similarly, large parts of chemistry are governed by physics.
Explanation:
A mixture is made of two or more substances that are not chemically combined whereas a compound is made of 2 or more elements that are chemically combined. The elements that make up the compound are combined in fixed ratios.
To calculate this, we need the Molarity formula. This formula tell us that Molarity, which is a concentration unit, is equal to the number of moles divided by the volume. In this question we already have the Molarity and the Volume, so let's build our equation:
C = n/V (You can see Molarity with the letter "C" because it means concentration)
3 = n/1
n = 1 * 3
n = 3 moles of NaOH
Answer:
5.2g copper (Cu) => 0.082 moles copper (2 sig.figs.)
Explanation:
mole conversions:
grams to moles => divide by formula wt.
moles to grams => multiply by formula wt.
gas volumes to moles => divide volume by 22.4Liters/mole (STP conditions only)
This problem:
mass to moles => divide by formula wt.
mass = 5.2g = 5.2g/63.5g/mole = 0.082 moles copper (2 sig.figs.)
Answer:
1. See explanation below
2. Density
3. Masses
Explanation:
1. Your picture is a bit too small to see the values but maybe this will help you.
To determine the maximum maximum mass in grams that triple beam balance can measure all you have to do is add up the maximum of each beam. So all you need to do is see the value at the last notch of each beam.
However, if you are referring to the picture that is attached in the bottom: The answer would be 610g. Because the last notches of each beam are as follows:
100 g
500 g
10 g
So we add that we get 610g.
2. density can be computed using the formula:
D = M/V
where:
D = density
M = mass
V = volume
As you can see in the both figures A and B measure 20 g, this means that their masses are the same. The density of objects can be different when either their masses, or their volumes are different. So even if they have the same mass, they can have different densities because they have different volumes.
3. Force of gravitational attraction between two objects is dependent on the masses of the two objects and the distance. The larger the mass, the stronger the gravitational force of attraction. This means that they have a direct relationship. Now when it comes to distance, the further apart they are the weaker the gravitational force of attraction, or in other words, they are indirectly related.