Answer:
158 L.
Explanation:
What is given?
Pressure (P) = 1 atm.
Temperature (T) = 112 °C + 273 = 385 K.
Mass of methane CH4 (g) = 80.0 g.
Molar mass of methane CH4 = 16 g/mol.
R constant = 0.0821 L*atm/mol*K.
What do we need? Volume (V).
Step-by-step solution:
To solve this problem, we have to use ideal gas law: the ideal gas law is a single equation which relates the pressure, volume, temperature, and number of moles of an ideal gas. The formula is:

Where P is pressure, V is volume, n is the number of moles, R is the constant and T is temperature.
So, let's find the number of moles that are in 80.0 g of methane using its molar mass. This conversion is:

So, in this case, n=5.
Now, let's solve for 'V' and replace the given values in the ideal gas law equation:

The volume would be 158 L.
Answer: Cornea
Explanation: The cornea is the only part of a human body that has no blood supply as it gets oxygen directly through the air.
2n² rule:
This rule is used to determine number of electrons in particular shell.
n=1 means K shell
n=2 means L shell
n=3 means M shell
n=4means N shell
The first K shell can hold upto 2 electrons, L shell can hold up to 8, third M shell can hold up to 18and the fourth N shell can hold upto 32 electrons. This rule of arrangement of electrons according to the shell is known 2n2 rule where n means number of shell.
For example: There is one proton in the nucleus of hydrogen atom, which moves in K shell path. It has no neutron.
Answer:
X = 2
Explanation:
As you know, the rate of a first-order reaction depends linearly on the concentration of a single reactant. The rate of a first-order reaction that takes the form