Answer : The vapor pressure of solution is 23.67 mmHg.
Solution:
As the relative lowering of vapor pressure is directly proportional to the amount of dissolved solute.
The formula for relative lowering of vapor pressure will be,

where,
= vapor pressure of pure solvent (water) = 23.76 mmHg
= vapor pressure of solution= ?
= mass of solute (sucrose) = 12.25 g
= mass of solvent (water) = 176.3 g
= molar mass of solvent (water) = 18.02 g/mole
= molar mass of solute (sucrose) = 342.3 g/mole
Now put all the given values in this formula ,we get the vapor pressure of the solution.


Therefore, the vapor pressure of solution is 23.67 mmHg.
Hi!
I'm not entirely sure about this so I'm sorry if I'm wrong but I think it would be helium.
Again in not entirely sure but i hope this helped you, i hope you have a great day, afternoon, or night!
Answer : The molar heat of solution of KCl is, 17.19 kJ/mol
Explanation :
First we have to calculate the heat of solution.

where,
q = heat produced = ?
c = specific heat capacity of water = 
= change in temperature = 0.360 K
Now put all the given values in the above formula, we get:


Now we have to calculate the molar heat solution of KCl.

where,
= enthalpy change = ?
q = heat released = 460.8 J
m = mass of
= 2.00 g
Molar mass of
= 74.55 g/mol

Now put all the given values in the above formula, we get:


Therefore, the molar heat of solution of KCl is, 17.19 kJ/mol
It has mass and takes up space is correct.
A homogeneous mixture, the substances are uniformly distributed throughout the mixture