1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina18 [472]
3 years ago
9

What are four minerals that are commonly taken from ores

Physics
1 answer:
Umnica [9.8K]3 years ago
5 0
If it helps or doesn't I'm sorry, but if you even played the game Minecraft just remember it. 

Gold, silver, coal, and iron come from ores. 
You might be interested in
a 4kg metal block absorbs 5000j of energy and increases to a temperature of 22°c. the metal has a specific heat capacity of 250j
e-lub [12.9K]

Answer:

17 °C

Explanation:

From specific Heat capacity.

Q = cm(t₂-t₁)................. Equation 1

Where Q = Heat absorb by the metal block, c = specific heat capacity of the metal block, m = mass of the metal block, t₂ = final temperature, t₁ = Initial temperature.

make t₁ the subject of the equation

t₁ = t₂-(Q/cm)............... Equation 2

Given: t₂ = 22 °C, Q = 5000 J, m = 4 kg, c = 250 J/kg.°c

Substitute into equation 2

t₁ = 22-[5000/(4×250)

t₁ = 22-(5000/1000)

t₁ = 22-5

t₁ = 17 °C

6 0
2 years ago
Carmen is helping load furniture and boxes onto a moving truck. She picks up boxes of her things, places them on a cart, and pus
AleksandrR [38]

Answer:

B because of the friction from the wheels

6 0
3 years ago
Read 2 more answers
What is amplitude?
nydimaria [60]
1. Frequency  is the number of complete waves that pass a point in a second.   2.Wavelength is the distance between two crests or two troughs.                     3.Time period <span> is the time it takes for one complete wave to pass a given point. 4. Amplitude is the height of the wave.   Hence option 4 is correct. </span>
8 0
3 years ago
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
2 years ago
Ur a genius if u explain how it’s A correctly
Alinara [238K]

Answer:

Explanation:

4/1=4

3/2=1.5

2/3=0.666667

1/4=0.25

D has the least number so its D

6 0
2 years ago
Other questions:
  • Two slits separated by a distance of d = 0.190 mm are located at a distance of D = 1.91 m from a screen. The screen is oriented
    10·1 answer
  • At 20 degrees Celsius, conducting wires made of different materials have the same length and the same diameter. Which wire has t
    15·1 answer
  • Which of the following would be an example of an uncontrolled experiment? The effect of salt and water being mixed at different
    10·1 answer
  • Two blocks a and b ($m_a&gt;m_b$) are pushed for a certain distance along a frictionless surface. how does the magnitude of the
    7·1 answer
  • An object moves in simple harmonic motion described by the equation d equals one fifth sine 2 t where t is measured in seconds a
    9·1 answer
  • The siren on an ambulance is emitting a sound whose frequency is 2250 Hz. The speed of sound is 343 m/s. (a) If the ambulance is
    9·1 answer
  • A weather balloon, rising vertically at 25.0 m/s, releases an instrument package when it is 100. meters above the ground. How ma
    11·1 answer
  • A 1.5 in diameter solid shaft is made of a steel alloy having an allowable shear stress of �allow = 12 ksi. a) Determine the max
    14·1 answer
  • An ac generator provides emf to a resistive load in a remote factory over a two-cable transmission line. At the factory a step-
    6·1 answer
  • A rocket that has a mass of 4000 lbm travels at 27,000 ft/sec. What is most nearly its kinetic energy
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!