I’m trying to get things expanded graph explanation sorry
Answer:

Explanation:
Work is the product of force and distance.

We know that 96 Joules of work were done and a 16 Newton force was applied to the object.
Substitute the values into the formula.

First, let's convert the units. This will make cancelling units easier later in the problem. 1 Joule (J) is equal to 1 Newton meter (N*m), so the work of 96 Joules equals 96 Newton meters.

Now, solve for distance by isolating the variable, d. It is being multiplied by 16 Newtons and the inverse of multiplication is division. Divide both sides of the equation by 16 N.


The units of Newtons cancel.


The object moved a distance of <u>6 meters.</u>
Answer:
Option B, Fix the piston in place so the volume of the pas remains constant
Explanation:
As we know

The effect on variable due to another variable can be studied by keeping the third variable constant.
Hence, in order the study the variation of temperature with pressure or vice versa, the volume needs to fixed at a certain value.
Hence, option B is correct
Answer: 1.d) The acceleration of an object is always less than the acceleration due to gravity, g (9.81m/s^-2)
2.a)acceleration decreases
Explanation:
Newton's second law:
Newton's second law states that the acceleration of an object is defined by two variables which is the total force acting on the object and the mass of that object. The acceleration is directly proportional to the net force that is applied on an object and inversely proportional to the mass of that object.
When the force applied on an object is increased so does the acceleration of an object however if the mass increase the acceleration decreases.
This can be felt when you look at the truck which usually carry heavy loads they seem to drive slow due to the load hence their acceleration is decreased by the mass that these truck carry .
Answer:
c. 981 watts

Explanation:
Given:
- horizontal speed of treadmill,

- weight carried,

- grade of the treadmill,

<u>Now the power can be given by:</u>

(where grade is the rise of the front edge per 100 m of the horizontal length)
