Answer:
49.2°
Explanation:
Using the equation of the trajectory
y = y₀ + (x - x₀) tanθ - ( g(x-x₀)²) / 2( v₀cosθ)²
1 / cos θ = sec θ
y - y₀ = (x - x₀) tanθ - ( g(x-x₀)²) sec²θ / 2v²
y - y₀ = 3.05 m - 2.44 m ( height of the basket - height the thrower released the ball) = 0.61 m
x - x₀ = 4.57
g = 9.81 m/s²
v = 7.15 m/s
0.61 m = 4.57 tanθ - (9.81 × 4.57²) sec²θ / 2 ×7.15²
0.61 m = 4.57 tanθ - 2 sec²θ
but sec²θ = tan²θ + 1
0.61 m = 4.57 tanθ - 2 (tan²θ + 1)
0.61 m = 4.57 tanθ - 2tan²θ - 2
0 = - 2tan²θ + 4.57 tanθ - 2 - 0.61 m
0 = - 2tan²θ + 4.57 tanθ - 2.61
multiply by -1 both side
0 = 2 tan²θ - 4.57 tanθ + 2.61
let x = tan θ
2 x² - 4.57 x + 2.61
using quadratic formula
-b ± √ ( b² - 4ac) / 2a
(- (- 4.57) ± √( (-4.57)² - (4 × 2 × 2.61))) / 2× 2
1.16 or 1.125
tanθ = 1.16
θ = tan⁻¹1.16 = 49.2°